On improved estimates for parabolic equations with double degeneracy
Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 250-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain improved pointwise estimates for solutions to nonlinear parabolic equations with double degeneracy. These estimates differ from the classical estimates known for the linear case in that the supremum of the modulus of a solution is estimated by the sum of two powers of the integral norm of the solution.
@article{TRSPY_2012_278_a22,
     author = {M. D. Surnachev},
     title = {On improved estimates for parabolic equations with double degeneracy},
     journal = {Informatics and Automation},
     pages = {250--259},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a22/}
}
TY  - JOUR
AU  - M. D. Surnachev
TI  - On improved estimates for parabolic equations with double degeneracy
JO  - Informatics and Automation
PY  - 2012
SP  - 250
EP  - 259
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a22/
LA  - ru
ID  - TRSPY_2012_278_a22
ER  - 
%0 Journal Article
%A M. D. Surnachev
%T On improved estimates for parabolic equations with double degeneracy
%J Informatics and Automation
%D 2012
%P 250-259
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a22/
%G ru
%F TRSPY_2012_278_a22
M. D. Surnachev. On improved estimates for parabolic equations with double degeneracy. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 250-259. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a22/

[1] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[2] DiBenedetto E., Degenerate parabolic equations, Springer, New York, 1993 | MR

[3] Porzio M.M., “$L_\mathrm{loc}^\infty $-estimates for degenerate and singular parabolic equations”, Nonlinear Anal., Theory Methods Appl., 17:11 (1991), 1093–1107 | DOI | MR | Zbl