Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2012_278_a15, author = {Lydia Novozhilova and Sergei Urazhdin}, title = {Stability criterion for critical points of a~model in micromagnetics}, journal = {Informatics and Automation}, pages = {170--177}, publisher = {mathdoc}, volume = {278}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a15/} }
TY - JOUR AU - Lydia Novozhilova AU - Sergei Urazhdin TI - Stability criterion for critical points of a~model in micromagnetics JO - Informatics and Automation PY - 2012 SP - 170 EP - 177 VL - 278 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a15/ LA - en ID - TRSPY_2012_278_a15 ER -
Lydia Novozhilova; Sergei Urazhdin. Stability criterion for critical points of a~model in micromagnetics. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 170-177. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a15/
[1] Bertotti G., Mayergoyz I.D., Serpico C., Nonlinear magnetization dynamics in nanosystems, Elsevier, Amsterdam, 2009 | MR | Zbl
[2] Slonczewski J.C., “Current-driven excitation of magnetic multilayers”, J. Magn. Magn. Mater., 159 (1996), L1–L7 | DOI
[3] Lim W.L., Anthony N., Higgins A., Urazhdin S., “Thermal dynamics in symmetric magnetic nanopillars driven by spin transfer”, Appl. Phys. Lett., 92 (2008), 172501 | DOI
[4] Urazhdin S., “Dynamical coupling between ferromagnets due to spin transfer torque: Analytical calculations and numerical simulations”, Phys. Rev. B, 78 (2008), 060405 | DOI
[5] Guckenheimer J., Holmes P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, New York, 1983 | MR | Zbl