Stability criterion for critical points of a~model in micromagnetics
Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 170-177
Voir la notice de l'article provenant de la source Math-Net.Ru
A recent modification of a classic Landau–Lifshitz equation that includes the so-called spin-transfer torque is widely recognized in physics community as a model of magnetization dynamics in certain nanodevices. Motivated by some experimental evidence, we introduce a generalization of this model, coupled Landau–Lifshitz equations with spin-transfer torque terms, and analyze it from dynamical systems standpoint. An explicit stability criterion for the critical points in terms of all parameters of the system is derived and illustrated with stability diagrams. Our analysis provides certain guidelines for the design of magnetic nanodevices with optimized response to control parameters.
@article{TRSPY_2012_278_a15,
author = {Lydia Novozhilova and Sergei Urazhdin},
title = {Stability criterion for critical points of a~model in micromagnetics},
journal = {Informatics and Automation},
pages = {170--177},
publisher = {mathdoc},
volume = {278},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a15/}
}
TY - JOUR AU - Lydia Novozhilova AU - Sergei Urazhdin TI - Stability criterion for critical points of a~model in micromagnetics JO - Informatics and Automation PY - 2012 SP - 170 EP - 177 VL - 278 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a15/ LA - en ID - TRSPY_2012_278_a15 ER -
Lydia Novozhilova; Sergei Urazhdin. Stability criterion for critical points of a~model in micromagnetics. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 170-177. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a15/