Stability criterion for critical points of a model in micromagnetics
Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 170-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A recent modification of a classic Landau–Lifshitz equation that includes the so-called spin-transfer torque is widely recognized in physics community as a model of magnetization dynamics in certain nanodevices. Motivated by some experimental evidence, we introduce a generalization of this model, coupled Landau–Lifshitz equations with spin-transfer torque terms, and analyze it from dynamical systems standpoint. An explicit stability criterion for the critical points in terms of all parameters of the system is derived and illustrated with stability diagrams. Our analysis provides certain guidelines for the design of magnetic nanodevices with optimized response to control parameters.
@article{TRSPY_2012_278_a15,
     author = {Lydia Novozhilova and Sergei Urazhdin},
     title = {Stability criterion for critical points of a~model in micromagnetics},
     journal = {Informatics and Automation},
     pages = {170--177},
     year = {2012},
     volume = {278},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a15/}
}
TY  - JOUR
AU  - Lydia Novozhilova
AU  - Sergei Urazhdin
TI  - Stability criterion for critical points of a model in micromagnetics
JO  - Informatics and Automation
PY  - 2012
SP  - 170
EP  - 177
VL  - 278
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a15/
LA  - en
ID  - TRSPY_2012_278_a15
ER  - 
%0 Journal Article
%A Lydia Novozhilova
%A Sergei Urazhdin
%T Stability criterion for critical points of a model in micromagnetics
%J Informatics and Automation
%D 2012
%P 170-177
%V 278
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a15/
%G en
%F TRSPY_2012_278_a15
Lydia Novozhilova; Sergei Urazhdin. Stability criterion for critical points of a model in micromagnetics. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 170-177. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a15/

[1] Bertotti G., Mayergoyz I.D., Serpico C., Nonlinear magnetization dynamics in nanosystems, Elsevier, Amsterdam, 2009 | MR | Zbl

[2] Slonczewski J.C., “Current-driven excitation of magnetic multilayers”, J. Magn. Magn. Mater., 159 (1996), L1–L7 | DOI

[3] Lim W.L., Anthony N., Higgins A., Urazhdin S., “Thermal dynamics in symmetric magnetic nanopillars driven by spin transfer”, Appl. Phys. Lett., 92 (2008), 172501 | DOI

[4] Urazhdin S., “Dynamical coupling between ferromagnets due to spin transfer torque: Analytical calculations and numerical simulations”, Phys. Rev. B, 78 (2008), 060405 | DOI

[5] Guckenheimer J., Holmes P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, New York, 1983 | MR | Zbl