Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains
Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 114-128
Voir la notice de l'article provenant de la source Math-Net.Ru
The first initial-boundary value problem with the homogeneous Dirichlet boundary condition and a compactly supported initial function is considered for a model second-order anisotropic parabolic equation in a cylindrical domain $D=(0,\infty)\times\Omega$. We find an upper bound that characterizes the dependence of the decay rate of solutions as $t\to\infty$ on the geometry of the unbounded domain $\Omega\subset\mathbb R_n$, $n\geq3$, and on nonlinearity exponents. We also obtain an estimate for the admissible decay rate of nonnegative solutions in unbounded domains; this estimate shows that the upper bound is sharp.
@article{TRSPY_2012_278_a10,
author = {L. M. Kozhevnikova and F. Kh. Mukminov},
title = {Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains},
journal = {Informatics and Automation},
pages = {114--128},
publisher = {mathdoc},
volume = {278},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a10/}
}
TY - JOUR AU - L. M. Kozhevnikova AU - F. Kh. Mukminov TI - Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains JO - Informatics and Automation PY - 2012 SP - 114 EP - 128 VL - 278 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a10/ LA - ru ID - TRSPY_2012_278_a10 ER -
%0 Journal Article %A L. M. Kozhevnikova %A F. Kh. Mukminov %T Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains %J Informatics and Automation %D 2012 %P 114-128 %V 278 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a10/ %G ru %F TRSPY_2012_278_a10
L. M. Kozhevnikova; F. Kh. Mukminov. Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 114-128. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a10/