Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains
Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 114-128

Voir la notice de l'article provenant de la source Math-Net.Ru

The first initial-boundary value problem with the homogeneous Dirichlet boundary condition and a compactly supported initial function is considered for a model second-order anisotropic parabolic equation in a cylindrical domain $D=(0,\infty)\times\Omega$. We find an upper bound that characterizes the dependence of the decay rate of solutions as $t\to\infty$ on the geometry of the unbounded domain $\Omega\subset\mathbb R_n$, $n\geq3$, and on nonlinearity exponents. We also obtain an estimate for the admissible decay rate of nonnegative solutions in unbounded domains; this estimate shows that the upper bound is sharp.
@article{TRSPY_2012_278_a10,
     author = {L. M. Kozhevnikova and F. Kh. Mukminov},
     title = {Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains},
     journal = {Informatics and Automation},
     pages = {114--128},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a10/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
AU  - F. Kh. Mukminov
TI  - Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains
JO  - Informatics and Automation
PY  - 2012
SP  - 114
EP  - 128
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a10/
LA  - ru
ID  - TRSPY_2012_278_a10
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%A F. Kh. Mukminov
%T Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains
%J Informatics and Automation
%D 2012
%P 114-128
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a10/
%G ru
%F TRSPY_2012_278_a10
L. M. Kozhevnikova; F. Kh. Mukminov. Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 114-128. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a10/