Quadratic helicities and the energy of magnetic fields
Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 16-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two new nonlocal asymptotic invariants of magnetic fields frozen into a finite domain filled with an ideal liquid conducting medium are introduced. The velocity of variation of the invariants in a nonideal medium is estimated for magnetic fields described by the induction equation. The invariants are used to study the spectral characteristics of magnetic fields.
@article{TRSPY_2012_278_a1,
     author = {P. M. Akhmet'ev},
     title = {Quadratic helicities and the energy of magnetic fields},
     journal = {Informatics and Automation},
     pages = {16--28},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a1/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - Quadratic helicities and the energy of magnetic fields
JO  - Informatics and Automation
PY  - 2012
SP  - 16
EP  - 28
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a1/
LA  - ru
ID  - TRSPY_2012_278_a1
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T Quadratic helicities and the energy of magnetic fields
%J Informatics and Automation
%D 2012
%P 16-28
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a1/
%G ru
%F TRSPY_2012_278_a1
P. M. Akhmet'ev. Quadratic helicities and the energy of magnetic fields. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 16-28. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a1/

[1] Akhmet'ev P.M., On asymptotic higher analogs of the magnetic helicity invariant in MHD, E-print, 2011, arXiv: 1105.5876v2 [math.GT]

[2] Akhmetev P.M., Kunakovskaya O.V., Kutvitskii V.A., “Zamechanie o dissipatsii integrala magnitnoi spiralnosti”, TMF, 158:1 (2009), 150–160 | DOI | MR | Zbl

[3] Zadachi Arnolda, Fazis, M., 2000 | MR

[4] Arnold V.I., Khesin B.A., Topologicheskie metody v gidrodinamike, MTsNMO, M., 2007

[5] Berger M.A., Field G.B., “The topological properties of magnetic helicity”, J. Fluid Mech., 147 (1984), 133–148 | DOI | MR

[6] DeTurck D., Gluck H., Komendarczyk R., Melvin P., Shonkwiler C., Vela-Vick D.S., Triple linking numbers, ambiguous Hopf invariants and integral formulas for three-component links, E-print, 2009, arXiv: 0901.1612v1 [math.GT] | MR

[7] Khalmosh P.R., Lektsii po ergodicheskoi teorii, Regulyarnaya i khaoticheskaya dinamika, 12, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 1999 | Zbl

[8] Mayer Ch., Topological link invariants of magnetic fields, Diss. Dokt. Naturwiss., Ruhr-Universität Bochum, Bochum, 2003

[9] Moffatt H.K., Magnetic field generation in electrically conducting fluids, Cambridge Univ. Press, Cambridge, 1978 | Zbl

[10] Rädler K.-H., “The generation of cosmic magnetic fields”, From the sun to the great attractor, Guanajuato lectures on astrophysics, 1999, Lect. Notes Phys., 556, Ed. by D. Page, J.G. Hirsch, Springer, Berlin, 2000, 101–172 | DOI

[11] Saks R.S., “Reshenie spektralnoi zadachi dlya operatora rotor i operatora Stoksa s periodicheskimi kraevymi usloviyami”, Zap. nauch. sem. POMI, 318 (2004), 246–276 | Zbl

[12] Semikoz V.B., Sokoloff D., “Magnetic helicity and cosmological magnetic field”, Astron. Astrophys., 433:3 (2005), L53–L56 | DOI | Zbl

[13] Zeldovich Ya.B., Ruzmaikin A.A., Sokolov D.D., Magnitnye polya v astrofizike, Regulyarnaya i khaoticheskaya dinamika, Moskva; Izhevsk, 2006