Harnack inequality for a~class of second-order degenerate elliptic equations
Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 7-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

A second-order degenerate elliptic equation in divergence form with a partially Muckenhoupt weight is studied. In a model case, the domain is divided by a hyperplane into two parts, and in each part the weight is a power function of $|x|$ with the exponent less than the dimension of the space in absolute value. It is well known that solutions of such equations are Hölder continuous, whereas the classical Harnack inequality is missing. In this paper, we formulate and prove the Harnack inequality corresponding to the second-order degenerate elliptic equation under consideration.
@article{TRSPY_2012_278_a0,
     author = {Yu. A. Alkhutov and E. A. Khrenova},
     title = {Harnack inequality for a~class of second-order degenerate elliptic equations},
     journal = {Informatics and Automation},
     pages = {7--15},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a0/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
AU  - E. A. Khrenova
TI  - Harnack inequality for a~class of second-order degenerate elliptic equations
JO  - Informatics and Automation
PY  - 2012
SP  - 7
EP  - 15
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a0/
LA  - ru
ID  - TRSPY_2012_278_a0
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%A E. A. Khrenova
%T Harnack inequality for a~class of second-order degenerate elliptic equations
%J Informatics and Automation
%D 2012
%P 7-15
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a0/
%G ru
%F TRSPY_2012_278_a0
Yu. A. Alkhutov; E. A. Khrenova. Harnack inequality for a~class of second-order degenerate elliptic equations. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 7-15. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a0/

[1] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl

[2] Coifman R.R., Fefferman C., “Weighted norm inequalities for maximal functions and singular integrals”, Stud. math., 51 (1974), 241–250 | MR | Zbl

[3] Fabes E.B., Kenig C.E., Serapioni R.P., “The local regularity of solutions of degenerate elliptic equations”, Commun. Partial Diff. Eqns., 7:1 (1982), 77–116 | DOI | MR | Zbl

[4] Heinonen J., Kilpeläinen T., Martio O., Nonlinear potential theory of degenerate elliptic equations, Clarendon Press, Oxford, 1993 | MR | Zbl

[5] Alkhutov Yu.A., Zhikov V.V., “O gëlderovosti reshenii vyrozhdayuschikhsya ellipticheskikh uravnenii”, DAN, 378:5 (2001), 583–588 | MR | Zbl

[6] Alkhutov Yu.A., Zhikov V.V., “Ob odnom klasse vyrozhdayuschikhsya ellipticheskikh uravnenii”, Tr. sem. im. I.G. Petrovskogo, 23, 2003, 16–27 | MR | Zbl

[7] Alkhutov Yu.A., Guseinov S.T., “Gëlderova nepreryvnost reshenii ravnomerno vyrozhdayuschegosya na chasti oblasti ellipticheskogo uravneniya”, Dif. uravneniya, 45:1 (2009), 54–59 | MR | Zbl

[8] Moser J., “A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Commun. Pure Appl. Math., 13:3 (1960), 457–468 | DOI | MR | Zbl