Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2012_278_a0, author = {Yu. A. Alkhutov and E. A. Khrenova}, title = {Harnack inequality for a~class of second-order degenerate elliptic equations}, journal = {Informatics and Automation}, pages = {7--15}, publisher = {mathdoc}, volume = {278}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a0/} }
TY - JOUR AU - Yu. A. Alkhutov AU - E. A. Khrenova TI - Harnack inequality for a~class of second-order degenerate elliptic equations JO - Informatics and Automation PY - 2012 SP - 7 EP - 15 VL - 278 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a0/ LA - ru ID - TRSPY_2012_278_a0 ER -
Yu. A. Alkhutov; E. A. Khrenova. Harnack inequality for a~class of second-order degenerate elliptic equations. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 7-15. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a0/
[1] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl
[2] Coifman R.R., Fefferman C., “Weighted norm inequalities for maximal functions and singular integrals”, Stud. math., 51 (1974), 241–250 | MR | Zbl
[3] Fabes E.B., Kenig C.E., Serapioni R.P., “The local regularity of solutions of degenerate elliptic equations”, Commun. Partial Diff. Eqns., 7:1 (1982), 77–116 | DOI | MR | Zbl
[4] Heinonen J., Kilpeläinen T., Martio O., Nonlinear potential theory of degenerate elliptic equations, Clarendon Press, Oxford, 1993 | MR | Zbl
[5] Alkhutov Yu.A., Zhikov V.V., “O gëlderovosti reshenii vyrozhdayuschikhsya ellipticheskikh uravnenii”, DAN, 378:5 (2001), 583–588 | MR | Zbl
[6] Alkhutov Yu.A., Zhikov V.V., “Ob odnom klasse vyrozhdayuschikhsya ellipticheskikh uravnenii”, Tr. sem. im. I.G. Petrovskogo, 23, 2003, 16–27 | MR | Zbl
[7] Alkhutov Yu.A., Guseinov S.T., “Gëlderova nepreryvnost reshenii ravnomerno vyrozhdayuschegosya na chasti oblasti ellipticheskogo uravneniya”, Dif. uravneniya, 45:1 (2009), 54–59 | MR | Zbl
[8] Moser J., “A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Commun. Pure Appl. Math., 13:3 (1960), 457–468 | DOI | MR | Zbl