On the solvability of problems of guaranteeing control for partially observable linear dynamical systems
Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 152-167
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to a specification of the method of open-loop control packages, a universal instrument for verification of the solvability of problems of closed-loop control for partially observable dynamical systems. Under the assumption that the control system and observed signal are linear and the set of the admissible initial states is finite, a structure of the corresponding open-loop control packages is specified and a finite-step backward construction is described, which provides a criterion for the solvability of a problem of guaranteed closed-loop guidance onto a target set at a prescribed time.
@article{TRSPY_2012_277_a9,
author = {A. V. Kryazhimskiy and Yu. S. Osipov},
title = {On the solvability of problems of guaranteeing control for partially observable linear dynamical systems},
journal = {Informatics and Automation},
pages = {152--167},
publisher = {mathdoc},
volume = {277},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a9/}
}
TY - JOUR AU - A. V. Kryazhimskiy AU - Yu. S. Osipov TI - On the solvability of problems of guaranteeing control for partially observable linear dynamical systems JO - Informatics and Automation PY - 2012 SP - 152 EP - 167 VL - 277 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a9/ LA - ru ID - TRSPY_2012_277_a9 ER -
%0 Journal Article %A A. V. Kryazhimskiy %A Yu. S. Osipov %T On the solvability of problems of guaranteeing control for partially observable linear dynamical systems %J Informatics and Automation %D 2012 %P 152-167 %V 277 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a9/ %G ru %F TRSPY_2012_277_a9
A. V. Kryazhimskiy; Yu. S. Osipov. On the solvability of problems of guaranteeing control for partially observable linear dynamical systems. Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 152-167. http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a9/