Discrete autowaves in systems of delay differential--difference equations in ecology
Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 101-143
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose a theory of relaxation oscillations for a nonlinear scalar delay differential-difference equation that represents a modification of the well-known Hutchinson equation in ecology. In particular, we establish that a one-dimensional chain of diffusively coupled equations of this type exhibits the well-known buffer phenomenon. Namely, under an increase in the number of links in the chain and a consistent decrease in the coupling constant, the number of coexisting stable periodic motions indefinitely increases.
@article{TRSPY_2012_277_a7,
author = {A. Yu. Kolesov and N. Kh. Rozov},
title = {Discrete autowaves in systems of delay differential--difference equations in ecology},
journal = {Informatics and Automation},
pages = {101--143},
publisher = {mathdoc},
volume = {277},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a7/}
}
TY - JOUR AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - Discrete autowaves in systems of delay differential--difference equations in ecology JO - Informatics and Automation PY - 2012 SP - 101 EP - 143 VL - 277 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a7/ LA - ru ID - TRSPY_2012_277_a7 ER -
A. Yu. Kolesov; N. Kh. Rozov. Discrete autowaves in systems of delay differential--difference equations in ecology. Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 101-143. http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a7/