Singularities of the affine chord envelope for two surfaces in four-space
Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 230-242

Voir la notice de l'article provenant de la source Math-Net.Ru

We study local singularities of the envelope of the set of straight lines (chords) joining those points of two surfaces embedded in $\mathbb R^4$ which are not in general position to each other.
@article{TRSPY_2012_277_a15,
     author = {Graham M. Reeve and Vladimir M. Zakalyukin},
     title = {Singularities of the affine chord envelope for two surfaces in four-space},
     journal = {Informatics and Automation},
     pages = {230--242},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a15/}
}
TY  - JOUR
AU  - Graham M. Reeve
AU  - Vladimir M. Zakalyukin
TI  - Singularities of the affine chord envelope for two surfaces in four-space
JO  - Informatics and Automation
PY  - 2012
SP  - 230
EP  - 242
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a15/
LA  - en
ID  - TRSPY_2012_277_a15
ER  - 
%0 Journal Article
%A Graham M. Reeve
%A Vladimir M. Zakalyukin
%T Singularities of the affine chord envelope for two surfaces in four-space
%J Informatics and Automation
%D 2012
%P 230-242
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a15/
%G en
%F TRSPY_2012_277_a15
Graham M. Reeve; Vladimir M. Zakalyukin. Singularities of the affine chord envelope for two surfaces in four-space. Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 230-242. http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a15/