An algorithm for reconstructing the intensity of a~source function
Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 178-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of reconstructing the intensity of a source function in a parabolic equation is considered. This problem is solved by an iterative algorithm based on a construction of feedback controls. The algorithm is robust with respect to information noise and computation errors.
@article{TRSPY_2012_277_a11,
     author = {V. I. Maksimov},
     title = {An algorithm for reconstructing the intensity of a~source function},
     journal = {Informatics and Automation},
     pages = {178--191},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a11/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - An algorithm for reconstructing the intensity of a~source function
JO  - Informatics and Automation
PY  - 2012
SP  - 178
EP  - 191
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a11/
LA  - ru
ID  - TRSPY_2012_277_a11
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T An algorithm for reconstructing the intensity of a~source function
%J Informatics and Automation
%D 2012
%P 178-191
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a11/
%G ru
%F TRSPY_2012_277_a11
V. I. Maksimov. An algorithm for reconstructing the intensity of a~source function. Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 178-191. http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a11/

[1] Marchuk G.I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982 | MR

[2] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR | Zbl

[3] Vasilev F.P., Metody resheniya ekstremalnykh zadach: Zadachi minimizatsii v funktsionalnykh prostranstvakh, regulyarizatsiya, approksimatsiya, Nauka, M., 1981 | MR

[4] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[5] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[6] Lavrentev M.M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, Izd-vo SO AN SSSR, Novosibirsk, 1962 | MR

[7] Romanov V.G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[8] Kryazhimskii A.V., Maksimov V.I., Osipov Yu.S., “O rekonstruktsii ekstremalnykh vozmuschenii v parabolicheskikh uravneniyakh”, ZhVMiMF., 37:3 (1997), 291–301 | MR

[9] Kryazhimskii A.V., Osipov Yu.S., “K regulyarizatsii vypukloi ekstremalnoi zadachi s netochno zadannymi ogranicheniyami. Prilozhenie k zadache optimalnogo upravleniya s fazovymi ogranicheniyami”, Nekotorye metody pozitsionnogo i programmnogo upravleniya, Sb. nauch. tr., Sverdlovsk, 1987, 34–54 | MR

[10] Kryazhimskii A., Convex optimization via feedbacks, Working paper WP-94-109, IIASA, Laxenburg, 1994

[11] Kryazhimskii A.V., Maksimov V.I., Samarskaya E.A., “O rekonstruktsii vkhodov v parabolicheskikh sistemakh”, Mat. modelirovanie, 9:3 (1997), 51–72 | MR

[12] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[13] Maksimov V.I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, UrO RAN, Ekaterinburg, 2000