Some properties of Malgrange isomonodromic deformations of linear $2\times2$ systems
Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 22-32
Voir la notice de l'article provenant de la source Math-Net.Ru
We study movable singularities of the Malgrange isomonodromic deformation of a linear differential $2\times 2$ system with two irregular singularities of Poincaré rank $1$ and with an arbitrary number of Fuchsian singular points.
@article{TRSPY_2012_277_a1,
author = {Yu. P. Bibilo and R. R. Gontsov},
title = {Some properties of {Malgrange} isomonodromic deformations of linear $2\times2$ systems},
journal = {Informatics and Automation},
pages = {22--32},
publisher = {mathdoc},
volume = {277},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a1/}
}
TY - JOUR AU - Yu. P. Bibilo AU - R. R. Gontsov TI - Some properties of Malgrange isomonodromic deformations of linear $2\times2$ systems JO - Informatics and Automation PY - 2012 SP - 22 EP - 32 VL - 277 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a1/ LA - ru ID - TRSPY_2012_277_a1 ER -
Yu. P. Bibilo; R. R. Gontsov. Some properties of Malgrange isomonodromic deformations of linear $2\times2$ systems. Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 22-32. http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a1/