Some properties of Malgrange isomonodromic deformations of linear $2\times2$ systems
Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 22-32

Voir la notice de l'article provenant de la source Math-Net.Ru

We study movable singularities of the Malgrange isomonodromic deformation of a linear differential $2\times 2$ system with two irregular singularities of Poincaré rank $1$ and with an arbitrary number of Fuchsian singular points.
@article{TRSPY_2012_277_a1,
     author = {Yu. P. Bibilo and R. R. Gontsov},
     title = {Some properties of {Malgrange} isomonodromic deformations of linear $2\times2$ systems},
     journal = {Informatics and Automation},
     pages = {22--32},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a1/}
}
TY  - JOUR
AU  - Yu. P. Bibilo
AU  - R. R. Gontsov
TI  - Some properties of Malgrange isomonodromic deformations of linear $2\times2$ systems
JO  - Informatics and Automation
PY  - 2012
SP  - 22
EP  - 32
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a1/
LA  - ru
ID  - TRSPY_2012_277_a1
ER  - 
%0 Journal Article
%A Yu. P. Bibilo
%A R. R. Gontsov
%T Some properties of Malgrange isomonodromic deformations of linear $2\times2$ systems
%J Informatics and Automation
%D 2012
%P 22-32
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a1/
%G ru
%F TRSPY_2012_277_a1
Yu. P. Bibilo; R. R. Gontsov. Some properties of Malgrange isomonodromic deformations of linear $2\times2$ systems. Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 22-32. http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a1/