Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2012_277_a0, author = {I. Ya. Aref'eva and I. V. Volovich}, title = {Asymptotic expansion of solutions in a~rolling problem}, journal = {Informatics and Automation}, pages = {7--21}, publisher = {mathdoc}, volume = {277}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a0/} }
I. Ya. Aref'eva; I. V. Volovich. Asymptotic expansion of solutions in a~rolling problem. Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 7-21. http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a0/
[1] Mischenko E.F., “Asimptoticheskaya teoriya relaksatsionnykh kolebanii, opisyvaemykh sistemami vtorogo poryadka”, Mat. sb., 44:4 (1958), 457–480
[2] Mischenko E.F., Rozov N.Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR
[3] Gorbunov D.S., Rubakov V.A., Vvedenie v teoriyu rannei Vselennoi: Teoriya goryachego Bolshogo vzryva, LKI, M., 2008; Введение в теорию ранней Вселенной: Космологические возмущения. Инфляционная теория, Красанд, М., 2010
[4] Aref'eva I.Ya., Bulatov N.V., Gorbachev R.V., FRW cosmology with non-positively defined Higgs potentials, E-print, 2011, arXiv: 1112.5951v3 [hep-th]
[5] Rubakov V.A., Klassicheskie kalibrovochnye polya, URSS, M., 1999 | MR
[6] Krylov N.M., Bogolyubov N.N., Vvedenie v nelineinuyu mekhaniku, Izd-vo AN USSR, Kiev, 1937
[7] Bogolyubov N.N., Mitropolskii Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR
[8] Anosov D.V., “Osrednenie v sistemakh obyknovennykh differentsialnykh uravnenii s bystro koleblyuschimisya resheniyami”, Izv. AN SSSR. Ser. mat., 24:5 (1960), 721–742 | MR | Zbl
[9] Arnold V.I., Kozlov V.V., Neishtadt A.I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy–3, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 3, VINITI, M., 1985 | MR | Zbl
[10] Kozlov V.V., Furta S.D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2009
[11] Aref'eva I.Ya., Joukovskaya L.V., Koshelev A.S., “Time evolution in superstring field theory on non-BPS brane. 1: Rolling tachyon and energy–momentum conservation”, J. High Energy Phys., 2003, no. 9, 012 | DOI | MR
[12] Vladimirov V.S., Volovich I.V., Zelenov E.I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR
[13] Vladimirov V.S., Volovich Ya.I., “O nelineinom uravnenii dinamiki v teorii $p$-adicheskoi struny”, TMF, 138:3 (2004), 355–368 | DOI | MR | Zbl
[14] Vladimirov V.S., “Ob uravnenii $p$-adicheskoi otkrytoi struny dlya skalyarnogo polya takhionov”, Izv. RAN. Ser. mat., 69:3 (2005), 55–80 | DOI | MR | Zbl
[15] Aref'eva I.Ya., Volovich I.V., “Cosmological daemon”, J. High Energy Phys., 2011, no. 8, 102 | DOI
[16] Volovich I.V., “Uravneniya Bogolyubova i funktsionalnaya mekhanika”, TMF, 164:3 (2010), 354–362 | DOI | Zbl
[17] Piskovskiy E.V., Volovich I.V., “On the correspondence between Newtonian and functional mechanics”, Quantum Bio-Informatics IV, Ed. by L. Accardi, W. Freudenberg, M. Ohya, World Sci., Singapore, 2011, 363–372 | DOI | MR
[18] Arefeva I.Ya., Volovich I.V., Piskovskii E.V., “Skatyvanie v modeli Khiggsa i ellipticheskie funktsii”, TMF (to appear) | DOI
[19] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | MR | Zbl
[20] Suetin S.P., Chislennyi analiz nekotorykh kharakteristik predelnogo tsikla svobodnogo uravneniya Van der Polya, Sovremennye problemy matematiki, 14, MIAN, M., 2010 | DOI
[21] Zhuravskii A.M., Spravochnik po ellipticheskim funktsiyam, Izd-vo AN SSSR, M.; L., 1941