Asymptotic expansion of solutions in a~rolling problem
Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 7-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic methods in the theory of differential equations and in nonlinear mechanics are commonly used to improve perturbation theory in the small oscillation regime. However, in some problems of nonlinear dynamics, in particular for the Higgs equation in field theory, it is important to consider not only small oscillations but also the rolling regime. In this article we consider the Higgs equation and develop a hyperbolic analogue of the averaging method. We represent the solution in terms of elliptic functions and, using an expansion in hyperbolic functions, construct an approximate solution in the rolling regime. An estimate of accuracy of the asymptotic expansion in an arbitrary order is presented.
@article{TRSPY_2012_277_a0,
     author = {I. Ya. Aref'eva and I. V. Volovich},
     title = {Asymptotic expansion of solutions in a~rolling problem},
     journal = {Informatics and Automation},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a0/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - I. V. Volovich
TI  - Asymptotic expansion of solutions in a~rolling problem
JO  - Informatics and Automation
PY  - 2012
SP  - 7
EP  - 21
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a0/
LA  - ru
ID  - TRSPY_2012_277_a0
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A I. V. Volovich
%T Asymptotic expansion of solutions in a~rolling problem
%J Informatics and Automation
%D 2012
%P 7-21
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a0/
%G ru
%F TRSPY_2012_277_a0
I. Ya. Aref'eva; I. V. Volovich. Asymptotic expansion of solutions in a~rolling problem. Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 7-21. http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a0/

[1] Mischenko E.F., “Asimptoticheskaya teoriya relaksatsionnykh kolebanii, opisyvaemykh sistemami vtorogo poryadka”, Mat. sb., 44:4 (1958), 457–480

[2] Mischenko E.F., Rozov N.Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR

[3] Gorbunov D.S., Rubakov V.A., Vvedenie v teoriyu rannei Vselennoi: Teoriya goryachego Bolshogo vzryva, LKI, M., 2008; Введение в теорию ранней Вселенной: Космологические возмущения. Инфляционная теория, Красанд, М., 2010

[4] Aref'eva I.Ya., Bulatov N.V., Gorbachev R.V., FRW cosmology with non-positively defined Higgs potentials, E-print, 2011, arXiv: 1112.5951v3 [hep-th]

[5] Rubakov V.A., Klassicheskie kalibrovochnye polya, URSS, M., 1999 | MR

[6] Krylov N.M., Bogolyubov N.N., Vvedenie v nelineinuyu mekhaniku, Izd-vo AN USSR, Kiev, 1937

[7] Bogolyubov N.N., Mitropolskii Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[8] Anosov D.V., “Osrednenie v sistemakh obyknovennykh differentsialnykh uravnenii s bystro koleblyuschimisya resheniyami”, Izv. AN SSSR. Ser. mat., 24:5 (1960), 721–742 | MR | Zbl

[9] Arnold V.I., Kozlov V.V., Neishtadt A.I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy–3, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 3, VINITI, M., 1985 | MR | Zbl

[10] Kozlov V.V., Furta S.D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2009

[11] Aref'eva I.Ya., Joukovskaya L.V., Koshelev A.S., “Time evolution in superstring field theory on non-BPS brane. 1: Rolling tachyon and energy–momentum conservation”, J. High Energy Phys., 2003, no. 9, 012 | DOI | MR

[12] Vladimirov V.S., Volovich I.V., Zelenov E.I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[13] Vladimirov V.S., Volovich Ya.I., “O nelineinom uravnenii dinamiki v teorii $p$-adicheskoi struny”, TMF, 138:3 (2004), 355–368 | DOI | MR | Zbl

[14] Vladimirov V.S., “Ob uravnenii $p$-adicheskoi otkrytoi struny dlya skalyarnogo polya takhionov”, Izv. RAN. Ser. mat., 69:3 (2005), 55–80 | DOI | MR | Zbl

[15] Aref'eva I.Ya., Volovich I.V., “Cosmological daemon”, J. High Energy Phys., 2011, no. 8, 102 | DOI

[16] Volovich I.V., “Uravneniya Bogolyubova i funktsionalnaya mekhanika”, TMF, 164:3 (2010), 354–362 | DOI | Zbl

[17] Piskovskiy E.V., Volovich I.V., “On the correspondence between Newtonian and functional mechanics”, Quantum Bio-Informatics IV, Ed. by L. Accardi, W. Freudenberg, M. Ohya, World Sci., Singapore, 2011, 363–372 | DOI | MR

[18] Arefeva I.Ya., Volovich I.V., Piskovskii E.V., “Skatyvanie v modeli Khiggsa i ellipticheskie funktsii”, TMF (to appear) | DOI

[19] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | MR | Zbl

[20] Suetin S.P., Chislennyi analiz nekotorykh kharakteristik predelnogo tsikla svobodnogo uravneniya Van der Polya, Sovremennye problemy matematiki, 14, MIAN, M., 2010 | DOI

[21] Zhuravskii A.M., Spravochnik po ellipticheskim funktsiyam, Izd-vo AN SSSR, M.; L., 1941