On the distribution of values of the derivative of the Riemann zeta function at its zeros.~I
Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 57-82
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\zeta'(s)$ be the derivative of the Riemann zeta function $\zeta(s)$. A study on the value distribution of $\zeta'(s)$ at the non-trivial zeros $\rho$ of $\zeta(s)$ is presented. In particular, for a fixed positive number $X$, an asymptotic formula and a non-trivial upper bound for the sum $\sum_{0\operatorname{Im}\rho\leq T}\zeta'(\rho)X^\rho$ as $T\to\infty$ are given. We clarify the dependence on the arithmetic nature of $X$.
@article{TRSPY_2012_276_a5,
author = {Akio Fujii},
title = {On the distribution of values of the derivative of the {Riemann} zeta function at its {zeros.~I}},
journal = {Informatics and Automation},
pages = {57--82},
publisher = {mathdoc},
volume = {276},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a5/}
}
Akio Fujii. On the distribution of values of the derivative of the Riemann zeta function at its zeros.~I. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 57-82. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a5/