On the distribution of values of the derivative of the Riemann zeta function at its zeros.~I
Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 57-82

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\zeta'(s)$ be the derivative of the Riemann zeta function $\zeta(s)$. A study on the value distribution of $\zeta'(s)$ at the non-trivial zeros $\rho$ of $\zeta(s)$ is presented. In particular, for a fixed positive number $X$, an asymptotic formula and a non-trivial upper bound for the sum $\sum_{0\operatorname{Im}\rho\leq T}\zeta'(\rho)X^\rho$ as $T\to\infty$ are given. We clarify the dependence on the arithmetic nature of $X$.
@article{TRSPY_2012_276_a5,
     author = {Akio Fujii},
     title = {On the distribution of values of the derivative of the {Riemann} zeta function at its {zeros.~I}},
     journal = {Informatics and Automation},
     pages = {57--82},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a5/}
}
TY  - JOUR
AU  - Akio Fujii
TI  - On the distribution of values of the derivative of the Riemann zeta function at its zeros.~I
JO  - Informatics and Automation
PY  - 2012
SP  - 57
EP  - 82
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a5/
LA  - en
ID  - TRSPY_2012_276_a5
ER  - 
%0 Journal Article
%A Akio Fujii
%T On the distribution of values of the derivative of the Riemann zeta function at its zeros.~I
%J Informatics and Automation
%D 2012
%P 57-82
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a5/
%G en
%F TRSPY_2012_276_a5
Akio Fujii. On the distribution of values of the derivative of the Riemann zeta function at its zeros.~I. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 57-82. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a5/