Geometric proof of R\o dseth's formula for Frobenius numbers
Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 280-287

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a geometric interpretation of continued fractions, we give a new proof of Rødseth's formula for Frobenius numbers.
@article{TRSPY_2012_276_a23,
     author = {A. V. Ustinov},
     title = {Geometric proof of {R\o} dseth's formula for {Frobenius} numbers},
     journal = {Informatics and Automation},
     pages = {280--287},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a23/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - Geometric proof of R\o dseth's formula for Frobenius numbers
JO  - Informatics and Automation
PY  - 2012
SP  - 280
EP  - 287
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a23/
LA  - ru
ID  - TRSPY_2012_276_a23
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T Geometric proof of R\o dseth's formula for Frobenius numbers
%J Informatics and Automation
%D 2012
%P 280-287
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a23/
%G ru
%F TRSPY_2012_276_a23
A. V. Ustinov. Geometric proof of R\o dseth's formula for Frobenius numbers. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 280-287. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a23/