$q$-Orthogonal polynomials, Rogers--Ramanujan identities, and mock theta functions
Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 27-38
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we examine the role that $q$-orthogonal polynomials can play in the application of Bailey pairs. The use of specializations of $q$-orthogonal polynomials reveals new instances of mock theta functions.
@article{TRSPY_2012_276_a2,
author = {George E. Andrews},
title = {$q${-Orthogonal} polynomials, {Rogers--Ramanujan} identities, and mock theta functions},
journal = {Informatics and Automation},
pages = {27--38},
publisher = {mathdoc},
volume = {276},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a2/}
}
George E. Andrews. $q$-Orthogonal polynomials, Rogers--Ramanujan identities, and mock theta functions. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 27-38. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a2/