An extension of Motohashi's observation on the zero-free region of the Riemann zeta-function
Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 233-238
Voir la notice de l'article provenant de la source Math-Net.Ru
We give an extension of Yoichi Motohashi's theorem saying that if the Riemann zeta-function on the line $\operatorname{Re}s=1$ attains very small values, then Vinogradov's zero-free region can be improved.
@article{TRSPY_2012_276_a18,
author = {Sergei N. Preobrazhenskiǐ},
title = {An extension of {Motohashi's} observation on the zero-free region of the {Riemann} zeta-function},
journal = {Informatics and Automation},
pages = {233--238},
publisher = {mathdoc},
volume = {276},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a18/}
}
TY - JOUR AU - Sergei N. Preobrazhenskiǐ TI - An extension of Motohashi's observation on the zero-free region of the Riemann zeta-function JO - Informatics and Automation PY - 2012 SP - 233 EP - 238 VL - 276 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a18/ LA - ru ID - TRSPY_2012_276_a18 ER -
Sergei N. Preobrazhenskiǐ. An extension of Motohashi's observation on the zero-free region of the Riemann zeta-function. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 233-238. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a18/