Enlarged major arcs in additive problems.~II
Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 182-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

Enlarged major arcs of the circle method are treated, and as consequences new bounds for the exceptional sets in the Waring–Goldbach problem for fourth and fifth powers are obtained.
@article{TRSPY_2012_276_a14,
     author = {Jianya Liu},
     title = {Enlarged major arcs in additive {problems.~II}},
     journal = {Informatics and Automation},
     pages = {182--197},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a14/}
}
TY  - JOUR
AU  - Jianya Liu
TI  - Enlarged major arcs in additive problems.~II
JO  - Informatics and Automation
PY  - 2012
SP  - 182
EP  - 197
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a14/
LA  - en
ID  - TRSPY_2012_276_a14
ER  - 
%0 Journal Article
%A Jianya Liu
%T Enlarged major arcs in additive problems.~II
%J Informatics and Automation
%D 2012
%P 182-197
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a14/
%G en
%F TRSPY_2012_276_a14
Jianya Liu. Enlarged major arcs in additive problems.~II. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 182-197. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a14/

[1] Choi K.-K.S., Liu J., “Small prime solutions of quadratic equations”, Can. J. Math., 54 (2002), 71–91 | DOI | MR | Zbl

[2] Gallagher P.X., “A large sieve density estimate near $\sigma =1$”, Invent. math., 11 (1970), 329–339 | DOI | MR | Zbl

[3] Karatsuba A.A., Basic analytic number theory, Springer, Berlin, 1993 | MR | Zbl

[4] Kawada K., Wooley T.D., “On the Waring–Goldbach problem for fourth and fifth powers”, Proc. London Math. Soc. Ser. 3., 83 (2001), 1–50 | DOI | MR | Zbl

[5] Kumchev A.V., “On the Waring–Goldbach problem: exceptional sets for sums of cubes and higher powers”, Can. J. Math., 57 (2005), 298–327 | DOI | MR | Zbl

[6] Kumchev A.V., “On Weyl sums over primes and almost primes”, Mich. Math. J., 54 (2006), 243–268 | DOI | MR | Zbl

[7] Liu J., Ye J., “Mean-value estimates for nonlinear Weyl sums over primes”, Japan. J. Math. New Ser., 31 (2005), 379–390 | MR | Zbl

[8] Liu J., “Enlarged major arcs in additive problems”, Math. Notes, 88 (2010), 395–401 | DOI | DOI | MR | Zbl

[9] Ren X., “On exponential sums over primes and application in Waring–Goldbach problem”, Sci. China. Ser. A., 48 (2005), 785–797 | DOI | MR | Zbl

[10] Saffari B., Vaughan R.C., “On the fractional parts of $x/n$ and related sequences. II”, Ann. Inst. Fourier., 27:2 (1977), 1–30 | DOI | MR | Zbl

[11] Thanigasalam K., “On sums of positive integral powers and simple proof of $G(6)\leq 31$”, Bull. Calcutta Math. Soc., 81 (1989), 279–294 | MR | Zbl