A counterexample to Valette's conjecture
Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 301-303
Voir la notice de l'article provenant de la source Math-Net.Ru
We disprove a well-known conjecture of D. Vallete (1978), which states that every $d$-dimensional self-affine convex body is a direct product of a polytope with a convex body of lower dimension. It is shown that there are counterexamples for dimension $d=4$. Additional assumptions under which the conjecture is true are discussed.
@article{TRSPY_2011_275_a19,
author = {A. Voynov},
title = {A counterexample to {Valette's} conjecture},
journal = {Informatics and Automation},
pages = {301--303},
publisher = {mathdoc},
volume = {275},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a19/}
}
A. Voynov. A counterexample to Valette's conjecture. Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 301-303. http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a19/