Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2011_275_a18, author = {M. I. Monastyrsky}, title = {Hecke graphs, {Ramanujan} graphs and generalized duality transformations for lattice spin systems}, journal = {Informatics and Automation}, pages = {295--300}, publisher = {mathdoc}, volume = {275}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a18/} }
TY - JOUR AU - M. I. Monastyrsky TI - Hecke graphs, Ramanujan graphs and generalized duality transformations for lattice spin systems JO - Informatics and Automation PY - 2011 SP - 295 EP - 300 VL - 275 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a18/ LA - en ID - TRSPY_2011_275_a18 ER -
M. I. Monastyrsky. Hecke graphs, Ramanujan graphs and generalized duality transformations for lattice spin systems. Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 295-300. http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a18/
[1] Huxley M.N., “Exceptional eigenvalues and congruence subgroups”, The Selberg trace formula and related topics, Contemp. Math., 53, Amer. Math. Soc., Providence, RI, 1986, 341–349 | DOI | MR
[2] Lubotzky A., Phillips R., Sarnak P., “Ramanujan graphs”, Combinatorica., 8:3 (1988), 261–277 | DOI | MR | Zbl
[3] Babai L., “Spectra of Cayley graphs”, J. Comb. Theory B, 27 (1979), 180–189 | DOI | MR | Zbl
[4] Diaconis P., Shahshahani M., “Generating a random permutation with random transpositions”, Ztschr. Wahrscheinlichkeitstheor. Verw. Geb., 57 (1981), 159–179 | DOI | MR | Zbl
[5] Brooks R., Makover E., “Random construction of riemann surfaces”, J. Diff. Geom., 68:1 (2004), 121–157 | MR | Zbl
[6] Belyi G.V., “O rasshireniyakh Galua maksimalnogo krugovogo polya”, Izv. AN SSSR. Ser. mat., 43:2 (1979), 267–276 ; Belyi G.V., “On Galois extensions of a maximal cyclotomic field”, Math. USSR. Izv., 14:2 (1980), 247–256 | MR | Zbl | DOI | MR | Zbl
[7] Brooks R., Makover E., “Belyi surfaces”, Entire functions in modern analysis, Israel Math. Conf. Proc., 15, Bar-Ilan Univ., Ramat-Gan, 2001, 37–46 | MR | Zbl
[8] Buchstaber V.M., Monastyrsky M.I., “Generalized Kramers–Wannier duality for spin systems with non-commutative symmetry”, J. Phys. A: Math. and Gen., 36:28 (2003), 7679–7692 | DOI | MR | Zbl
[9] Murty M.Ram., “Ramanujan graphs”, J. Ramanujan Math. Soc., 18:1 (2003), 33–52 | MR | Zbl
[10] Monastyrsky M.I., “Generalized Kramers–Wannier duality for spin systems with non-commutative symmetry”, Proc. 4th Summer School in Modern Mathematical Physics, Belgrade (Serbia), Sept. 3–14, 2006, Inst. Phys., Belgrade, 2007, 283–296
[11] Sarnak P., Xue X., “Bounds for multiplicities of automorphic representations”, Duke Math. J., 64:1 (1991), 207–227 | DOI | MR | Zbl
[12] Brooks R., Monastyrsky M., “$k$-Regular graphs and Hecke surfaces”, Geometry, spectral theory, groups, and dynamics, Contemp. Math., 387, Amer. Math. Soc., Providence, RI, 2005, 65–74 | DOI | MR | Zbl
[13] Monastyrskii M.I., “Poverkhnosti Gekke i preobrazovaniya dualnosti v reshetochnykh spinovykh sistemakh”, TMF, 163:3 (2010), 505–512 | DOI | MR