Degrees of autostability relative to strong constructivizations
Informatics and Automation, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 119-129

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectra of the Turing degrees of autostability of computable models are studied. For almost prime decidable models, it is shown that the autostability spectrum relative to strong constructivizations of such models always contains a certain recursively enumerable Turing degree; moreover, it is shown that for any recursively enumerable Turing degree, there exist prime models in which this degree is the least one in the autostability spectrum relative to strong constructivizations.
@article{TRSPY_2011_274_a6,
     author = {S. S. Goncharov},
     title = {Degrees of autostability relative to strong constructivizations},
     journal = {Informatics and Automation},
     pages = {119--129},
     publisher = {mathdoc},
     volume = {274},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_274_a6/}
}
TY  - JOUR
AU  - S. S. Goncharov
TI  - Degrees of autostability relative to strong constructivizations
JO  - Informatics and Automation
PY  - 2011
SP  - 119
EP  - 129
VL  - 274
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_274_a6/
LA  - ru
ID  - TRSPY_2011_274_a6
ER  - 
%0 Journal Article
%A S. S. Goncharov
%T Degrees of autostability relative to strong constructivizations
%J Informatics and Automation
%D 2011
%P 119-129
%V 274
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_274_a6/
%G ru
%F TRSPY_2011_274_a6
S. S. Goncharov. Degrees of autostability relative to strong constructivizations. Informatics and Automation, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 119-129. http://geodesic.mathdoc.fr/item/TRSPY_2011_274_a6/