Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2011_274_a5, author = {Nikolay K. Vereshchagin and Andrej A. Muchnik}, title = {On joint conditional complexity (entropy)}, journal = {Informatics and Automation}, pages = {103--118}, publisher = {mathdoc}, volume = {274}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_274_a5/} }
Nikolay K. Vereshchagin; Andrej A. Muchnik. On joint conditional complexity (entropy). Informatics and Automation, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 103-118. http://geodesic.mathdoc.fr/item/TRSPY_2011_274_a5/
[1] Bennett C.H., Gács P., Li M., Vitanyi P.M.B., Zurek W.H., “Information distance”, IEEE Trans. Inf. Theory, 44:4 (1998), 1407–1423 | DOI | MR | Zbl
[2] Chernoff H., “A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations”, Ann. Math. Stat., 23 (1952), 493–507 | DOI | MR | Zbl
[3] Muchnik An., Romashchenko A., Shen A., Vereshchagin N., “Upper semilattice of binary strings with the relation "$x$ is simple conditional to $y$"”, Computational complexity, Proc. 14th Annu. IEEE Conf., Atlanta, May 4–6, 1999, IEEE Comput. Soc. Press, Los Alamitos, CA, 1999, 114–122 | MR
[4] Muchnik A., Vereshchagin N., “Logical operations and Kolmogorov complexity. II”, Computational complexity, Proc. 16th Annu. IEEE Conf., Chicago, June 2001, IEEE Comput. Soc. Press, Los Alamitos, CA, 2001, 256–265
[5] Muchnik An., Vereshchagin N., “Shannon entropy vs. Kolmogorov complexity”, Computer science—theory and applications, Proc. First Intern. Symp. CSR 2006, St. Petersburg (Russia), June 8–12, 2006, Lect. Notes Comput. Sci., 3967, eds. D. Grigoriev, J. Harrison, E.A. Hirsch, Springer, Berlin, 2006, 281–291 | DOI | MR | Zbl
[6] Muchnik An.A., “Conditional complexity and codes”, Theor. Comput. Sci., 271:1–2 (2002), 97–109 | DOI | MR | Zbl
[7] Shen A., Vereshchagin N., “Logical operations and Kolmogorov complexity”, Theor. Comput. Sci., 2002:1–2, 125–129 | MR | Zbl
[8] Zvonkin A.K., Levin L.A., “Slozhnost konechnykh ob'ektov i obosnovanie ponyatii informatsii i sluchainosti s pomoschyu teorii algoritmov”, UMN, 25:6 (1970), 85–127 | MR | Zbl