A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$
Informatics and Automation, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 32-40

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a simplified proof of Japaridze's arithmetical completeness theorem for the well-known polymodal provability logic $\mathbf{GLP}$. The simplification is achieved by employing a fragment $\mathbf J$ of $\mathbf{GLP}$ that enjoys a more convenient Kripke-style semantics than the logic considered in the papers by Ignatiev and Boolos. In particular, this allows us to simplify the arithmetical fixed point construction and to bring it closer to the standard construction due to Solovay.
@article{TRSPY_2011_274_a3,
     author = {L. D. Beklemishev},
     title = {A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$},
     journal = {Informatics and Automation},
     pages = {32--40},
     publisher = {mathdoc},
     volume = {274},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_274_a3/}
}
TY  - JOUR
AU  - L. D. Beklemishev
TI  - A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$
JO  - Informatics and Automation
PY  - 2011
SP  - 32
EP  - 40
VL  - 274
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_274_a3/
LA  - ru
ID  - TRSPY_2011_274_a3
ER  - 
%0 Journal Article
%A L. D. Beklemishev
%T A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$
%J Informatics and Automation
%D 2011
%P 32-40
%V 274
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_274_a3/
%G ru
%F TRSPY_2011_274_a3
L. D. Beklemishev. A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$. Informatics and Automation, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 32-40. http://geodesic.mathdoc.fr/item/TRSPY_2011_274_a3/