Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2011_273_a2, author = {V. I. Arnold}, title = {Topological properties of eigenoscillations in mathematical physics}, journal = {Informatics and Automation}, pages = {30--40}, publisher = {mathdoc}, volume = {273}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a2/} }
V. I. Arnold. Topological properties of eigenoscillations in mathematical physics. Informatics and Automation, Modern problems of mathematics, Tome 273 (2011), pp. 30-40. http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a2/
[1] Courant R., Hilbert D., Methods of mathematical physics, V. 1, Ch. 7, § 5, Interscience, New York, 1953 | MR
[2] Arnold V.I., “O raspolozhenii ovalov veschestvennykh ploskikh algebraicheskikh krivykh, involyutsiyakh chetyrekhmernykh gladkikh mnogoobrazii i arifmetike tselochislennykh kvadratichnykh form”, Funkts. anal. i ego pril., 5:3 (1971), 1–9 | MR
[3] Arnold V.I., “Mody i kvazimody”, Funkts. anal. i ego pril., 6:2 (1972), 12–20 | MR | Zbl
[4] Arnold V.I., Korkina E.A., “Rost magnitnogo polya v trekhmernom statsionarnom potoke neszhimaemoi zhidkosti”, Vestn. MGU. Matematika. Mekhanika, 1983, no. 3, 43–46 | Zbl
[5] Arnold V.I., “Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect”, Sel. Math. New Ser., 1:1 (1995), 1–19 | DOI | MR | Zbl
[6] Arnold V.I., “On the topology of the eigenfields”, Topol. Methods Nonlinear Anal., 26 (2005), 9–16 | MR | Zbl
[7] Arnold V.I., “Frequent representations”, Moscow Math. J., 3:4 (2003), 1209–1221 | MR | Zbl
[8] Arnold V.I., Arnold's problems, Springer, Berlin, 2004, Problems 1987-10, 2003-6, 2003-10, 1994-43, 1983-2, 1985-21 | MR