Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups
Informatics and Automation, Modern problems of mathematics, Tome 273 (2011), pp. 247-256

Voir la notice de l'article provenant de la source Math-Net.Ru

In a series of our papers with Carlo Madonna (2002–2008), we described self-correspondences of a K3 surface over $\mathbb C$ via moduli of sheaves with primitive isotropic Mukai vectors for the Picard number 1 or 2 of the K3 surfaces. Here we give a natural and functorial answer to the same problem for an arbitrary Picard number. As an application, we characterize, in terms of self-correspondences via moduli of sheaves, K3 surfaces with reflective Picard lattice, that is, when the automorphism group of the lattice is generated by reflections up to finite index. It is known since 1981 that the number of reflective hyperbolic lattices is finite. We also formulate some natural unsolved related problems.
@article{TRSPY_2011_273_a10,
     author = {Viacheslav V. Nikulin},
     title = {Self-correspondences of {K3} surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups},
     journal = {Informatics and Automation},
     pages = {247--256},
     publisher = {mathdoc},
     volume = {273},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a10/}
}
TY  - JOUR
AU  - Viacheslav V. Nikulin
TI  - Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups
JO  - Informatics and Automation
PY  - 2011
SP  - 247
EP  - 256
VL  - 273
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a10/
LA  - ru
ID  - TRSPY_2011_273_a10
ER  - 
%0 Journal Article
%A Viacheslav V. Nikulin
%T Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups
%J Informatics and Automation
%D 2011
%P 247-256
%V 273
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a10/
%G ru
%F TRSPY_2011_273_a10
Viacheslav V. Nikulin. Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups. Informatics and Automation, Modern problems of mathematics, Tome 273 (2011), pp. 247-256. http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a10/