Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups
Informatics and Automation, Modern problems of mathematics, Tome 273 (2011), pp. 247-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a series of our papers with Carlo Madonna (2002–2008), we described self-correspondences of a K3 surface over $\mathbb C$ via moduli of sheaves with primitive isotropic Mukai vectors for the Picard number 1 or 2 of the K3 surfaces. Here we give a natural and functorial answer to the same problem for an arbitrary Picard number. As an application, we characterize, in terms of self-correspondences via moduli of sheaves, K3 surfaces with reflective Picard lattice, that is, when the automorphism group of the lattice is generated by reflections up to finite index. It is known since 1981 that the number of reflective hyperbolic lattices is finite. We also formulate some natural unsolved related problems.
@article{TRSPY_2011_273_a10,
     author = {Viacheslav V. Nikulin},
     title = {Self-correspondences of {K3} surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups},
     journal = {Informatics and Automation},
     pages = {247--256},
     publisher = {mathdoc},
     volume = {273},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a10/}
}
TY  - JOUR
AU  - Viacheslav V. Nikulin
TI  - Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups
JO  - Informatics and Automation
PY  - 2011
SP  - 247
EP  - 256
VL  - 273
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a10/
LA  - ru
ID  - TRSPY_2011_273_a10
ER  - 
%0 Journal Article
%A Viacheslav V. Nikulin
%T Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups
%J Informatics and Automation
%D 2011
%P 247-256
%V 273
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a10/
%G ru
%F TRSPY_2011_273_a10
Viacheslav V. Nikulin. Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups. Informatics and Automation, Modern problems of mathematics, Tome 273 (2011), pp. 247-256. http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a10/

[1] Cassels J.W.S., Rational quadratic forms, Acad. Press, London, 1978 ; Касселс Дж.В.С., Рациональные квадратичные формы, Мир, М., 1982 | MR | Zbl | MR

[2] Madonna K., Nikulin V.V., “O klassicheskom sootvetstvii mezhdu poverkhnostyami K3”, Tr. MIAN, 241, 2003, 132–168, arXiv: math/0206158 [math.AG] | MR | Zbl

[3] Madonna C., Nikulin V.V., “On a classical correspondence between K3 surfaces. II”, Strings and geometry, Proc. Clay Math. Inst. 2002 Summer School, Clay Math. Proc., 3, eds. Ed. by M. Douglas, J. Gauntlett, M. Gross, Amer. Math. Soc., Providence, RI, 2004, 285–300, arXiv: math/0304415 [math.AG] | MR

[4] Madonna K.G., Nikulin V.V., “Yavnye sootvetstviya K3-poverkhnosti s soboi”, Izv. RAN. Ser. mat., 72:3 (2008), 89–102 ; arXiv: ; arXiv: ; arXiv: math/0605362 [math.AG]math/0606239 [math.AG]math/0606289 [math.AG] | DOI | MR | Zbl

[5] Mukai S., “Symplectic structure of the moduli space of sheaves on an abelian or K3 surface”, Invent. math., 77 (1984), 101–116 | DOI | MR | Zbl

[6] Mukai S., “On the moduli space of bundles on K3 surfaces. I”, Vector bundles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., 11, Tata Inst. Fund. Res., Bombay, 1987, 341–413 | MR | Zbl

[7] Nikulin V.V., “Konechnye gruppy avtomorfizmov kelerovykh poverkhnostei tipa K3”, Tr. Mosk. mat. o-va, 38 (1979), 75–137 | MR | Zbl

[8] Nikulin V.V., “Tselochislennye simmetricheskie bilineinye formy i nekotorye ikh geometricheskie prilozheniya”, Izv. AN SSSR. Ser. mat., 43:1 (1979), 111–177 | MR | Zbl

[9] Nikulin V.V., “Ob arifmeticheskikh gruppakh, porozhdennykh otrazheniyami, v prostranstvakh Lobachevskogo”, Izv. AN SSSR. Ser. mat., 44:3 (1980), 637–669 | MR | Zbl

[10] Nikulin V.V., “O klassifikatsii arifmeticheskikh grupp, porozhdennykh otrazheniyami, v prostranstvakh Lobachevskogo”, Izv. AN SSSR. Ser. mat., 45:1 (1981), 113–142 | MR | Zbl

[11] Nikulin V.V., “O faktor-gruppakh grupp avtomorfizmov giperbolicheskikh form po podgruppam, porozhdennym 2-otrazheniyami. Algebro-geometricheskie prilozheniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 18, VINITI, M., 1981, 3–114 | MR

[12] Nikulin V.V., “O sootvetstviyakh mezhdu poverkhnostyami tipa K3”, Izv. AN SSSR. Ser. mat., 51:2 (1987), 402–411 | MR | Zbl

[13] Nikulin V.V., “O sootvetstviyakh poverkhnosti K3 s soboi. I”, Tr. MIAN, 246, 2004, 217–239, arXiv: math/0307355 [math.AG] | MR | Zbl

[14] Nikulin V.V., “On correspondences of a K3 surface with itself. II”, Algebraic geometry, Proc. Korea–Japan Conf. in honor of I. Dolgachev's 60th birthday (Seoul, 2004), Contemp. Math., 422, eds. Ed. by J.H. Keum, S. Kondō, Amer. Math. Soc., Providence, RI, 2007, 121–172 | DOI | MR | Zbl

[15] Nikulin V.V., “Self-correspondences of K3 surfaces via moduli of sheaves”, Algebra, arithmetic, and geometry, In honor of Yu.I. Manin, Prog. Math., 2, eds. Ed. by Yu. Tschinkel, Yu. Zarhin, Birkhäuser, Boston, MA, 2009, 439–464, arXiv: math/0609233 [math.AG] | MR

[16] Nikulin V.V., “On ground fields of arithmetic hyperbolic reflection groups. III”, J. London Math. Soc. Ser. 2., 79:3 (2009), 738–756, arXiv: 0710.2340 [math.AG] | DOI | MR | Zbl

[17] Nikulin V.V., Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups, E-print, 2008, arXiv: 0810.2945 [math.AG] | MR

[18] Pyatetskii-Shapiro I.I., Shafarevich I.R., “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa K3”, Izv. AN SSSR. Ser. mat., 35:3 (1971), 530–572

[19] Tyurin A.N., “Cycles, curves and vector bundles on an algebraic surface”, Duke Math. J., 54:1 (1987), 1–26 | DOI | MR | Zbl

[20] Tyurin A.N., “Spetsialnye 0-tsikly na polyarizovannoi poverkhnosti tipa K3”, Izv. AN SSSR. Ser. mat., 51:1 (1987), 131–151 | MR

[21] Tyurin A.N., “Simplekticheskie struktury na mnogoobrazii modulei vektornykh rassloenii na algebraicheskikh poverkhnostyakh s $p_g>0$”, Izv. AN SSSR. Ser. mat., 52:4 (1988), 813–852 | MR | Zbl

[22] Vinberg E.B., “Otsutstvie kristallograficheskikh grupp otrazhenii v prostranstvakh Lobachevskogo bolshoi razmernosti”, Funkts. anal. i ego pril., 15:2 (1981), 67–68 | MR | Zbl

[23] Vinberg E.B., “Otsutstvie kristallograficheskikh grupp otrazhenii v prostranstvakh Lobachevskogo bolshoi razmernosti”, Tr. Mosk. mat. o-va., 47 (1984), 68–102 | MR | Zbl

[24] Yoshioka K., Irreducibility of moduli spaces of vector bundles on K3 surfaces, E-print, 1999, arXiv: math/9907001 [math.AG] | MR