The geometry of maximum principle
Informatics and Automation, Modern problems of mathematics, Tome 273 (2011), pp. 5-27
Cet article a éte moissonné depuis la source Math-Net.Ru
An invariant formulation of the maximum principle in optimal control is presented, and some second-order invariants are discussed.
@article{TRSPY_2011_273_a0,
author = {A. A. Agrachev and R. V. Gamkrelidze},
title = {The geometry of maximum principle},
journal = {Informatics and Automation},
pages = {5--27},
year = {2011},
volume = {273},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a0/}
}
A. A. Agrachev; R. V. Gamkrelidze. The geometry of maximum principle. Informatics and Automation, Modern problems of mathematics, Tome 273 (2011), pp. 5-27. http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a0/
[1] Agrachev A.A., Gamkrelidze R.V., “Printsip maksimuma Pontryagina 50 let spustya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12:1 (2006), 6–14 | Zbl
[2] Gamkrelidze R.V., “Proizvodnaya Pontryagina v optimalnom upravlenii”, Tr. MIAN, 268, 2010, 94–99 | MR | Zbl
[3] Agrachev A.A., Sachkov Yu.L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2004 | Zbl
[4] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961