Unfolded dynamics and conformal higher spin gauge theory
Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 277-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

Unfolded dynamics approach is illustrated by the analysis of conformal gauge fields of generic symmetry type. For the case of general free fields it is shown how unfolded field equations can be reformulated in the BRST form.
@article{TRSPY_2011_272_a24,
     author = {M. A. Vasiliev},
     title = {Unfolded dynamics and conformal higher spin gauge theory},
     journal = {Informatics and Automation},
     pages = {277--285},
     publisher = {mathdoc},
     volume = {272},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a24/}
}
TY  - JOUR
AU  - M. A. Vasiliev
TI  - Unfolded dynamics and conformal higher spin gauge theory
JO  - Informatics and Automation
PY  - 2011
SP  - 277
EP  - 285
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a24/
LA  - en
ID  - TRSPY_2011_272_a24
ER  - 
%0 Journal Article
%A M. A. Vasiliev
%T Unfolded dynamics and conformal higher spin gauge theory
%J Informatics and Automation
%D 2011
%P 277-285
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a24/
%G en
%F TRSPY_2011_272_a24
M. A. Vasiliev. Unfolded dynamics and conformal higher spin gauge theory. Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 277-285. http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a24/

[1] Slavnov A.A., Faddeev L.D., “Bezmassovoe i massivnoe pole Yanga–Millsa”, TMF, 3:1 (1970), 18 | MR

[2] Slavnov A.A., “Tozhdestva Uorda v kalibrovochnykh teoriyakh”, TMF, 10:2 (1972), 153

[3] Bekaert X., Cnockaert S., Iazeolla C., Vasiliev M.A., Nonlinear higher spin theories in various dimensions, E-print, 2005, arXiv: hep-th/0503128

[4] Fronsdal C., “Massless fields with integer spin”, Phys. Rev. D, 18 (1978), 3624 | DOI

[5] Fradkin E.S., Tseytlin A.A., “Conformal supergravity”, Phys. Rep., 119 (1985), 233 | DOI | MR

[6] Vasiliev M.A., “More on equations of motion for interacting massless fields of all spins in $3+1$ dimensions”, Phys. Lett. B, 285 (1992), 225 | DOI | MR

[7] Vasiliev M.A., “Nonlinear equations for symmetric massless higher spin fields in $(A)dS_d$”, Phys. Lett. B, 567 (2003), 139, arXiv: hep-th/0304049 | DOI | MR | Zbl

[8] Fradkin E.S., Linetsky V.Ya., “Cubic interaction in conformal theory of integer higher-spin fields in four dimensional space–time”, Phys. Lett. B, 231 (1989), 97 | DOI | MR | Zbl

[9] Segal A.Yu., “Conformal higher spin theory”, Nucl. Phys. B, 664 (2003), 59, arXiv: hep-th/0207212 | DOI | MR | Zbl

[10] Vasiliev M.A., “Consistent equations for interacting massless fields of all spins in the first order in curvatures”, Ann. Phys., 190 (1989), 59 | DOI | MR | Zbl

[11] Sullivan D., “Infinitesimal computations in topology”, Publ. Math. IHES., 47 (1977), 269 | DOI | MR | Zbl

[12] Gelfond O.A., Vasiliev M.A., Unfolding versus BRST and currents in $Sp(2M)$ invariant higher-spin theory, E-print, 2010, arXiv: 1001.2585 [hep-th] | Zbl

[13] Vasilev M.A., Sheinkman O.V., “Skalyarnoe pole v proizvolnoi razmernosti s tochki zreniya kalibrovochnoi teorii vysshikh spinov”, TMF, 123:2 (2000), 323, arXiv: hep-th/0003123 | DOI | MR

[14] Vasiliev M.A., “Bosonic conformal higher-spin fields of any symmetry”, Nucl. Phys. B, 829 (2010), 176, arXiv: 0909.5226 [hep-th] | DOI | MR | Zbl

[15] Marnelius R., Lagrangian higher spin field theories from the O(N) extended supersymmetric particle, E-print, 2009, arXiv: 0906.2084 [hep-th]