Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2011_272_a21, author = {A. A. Slavnov}, title = {Lorentz-invariant quantization of the {Yang--Mills} theory without {Gribov} ambiguity}, journal = {Informatics and Automation}, pages = {246--255}, publisher = {mathdoc}, volume = {272}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a21/} }
A. A. Slavnov. Lorentz-invariant quantization of the Yang--Mills theory without Gribov ambiguity. Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 246-255. http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a21/
[1] Faddeev L.D., Popov V.N., “Feynman diagrams for the Yang–Mills field”, Phys. Lett. B, 25 (1967), 29 | DOI
[2] Popov V.N., Faddeev L.D., Teoriya vozmuschenii dlya kalibrovochno invariantnykh polei]\, Preprint 67-36, ITF AN USSR, Kiev, 1967
[3] DeWitt B.S., “Quantum theory of gravity. I: The canonical theory”, Phys. Rev., 160 (1967), 1113 | DOI | Zbl
[4] DeWitt B.S., “Quantum theory of gravity. II: The manifestly covariant theory”, Phys. Rev., 162 (1967), 1195 | DOI | Zbl
[5] Gribov V.N., “Quantization of non-Abelian gauge theories”, Nucl. Phys. B, 139 (1978), 1 | DOI | MR
[6] Singer I.M., “Some remarks on the Gribov ambiguity”, Commun. Math. Phys., 60 (1978), 7 | DOI | MR | Zbl
[7] Zwanziger D., “Action from the Gribov horizon”, Nucl. Phys. B, 321 (1989), 591 | DOI | MR
[8] Zwanziger D., “Local and renormalizable action from the Gribov horizon”, Nucl. Phys. B, 323 (1989), 513 | DOI | MR
[9] Kugo T., Ojima I., “Local covariant operator formalism of non-Abelian gauge theories and quark confinement problem”, Prog. Theor. Phys. Suppl., 66 (1979), 1 | DOI | MR
[10] Slavnov A.A., “A Lorentz invariant formulation of the Yang–Mills theory with gauge invariant ghost field Lagrangian”, J. High Energy Phys., 2008, no. 8, 047 | DOI | MR
[11] Slavnov A.A., “Lokalnaya kalibrovochno-invariantnaya infrakrasnaya regulyarizatsiya dlya teorii Yanga–Millsa”, TMF, 154:2 (2008), 213 | DOI | MR | Zbl
[12] Quadri A., Slavnov A.A., “Renormalization of the Yang–Mills theory in the ambiguity-free gauge”, J. High Energy Phys., 2010, no. 7, 087, arXiv: 1002.2490 [hep-th] | DOI | MR | Zbl
[13] Henneaux M., “BRST symmetry in the classical and quantum theories of gauge systems”, Quantum mechanics of fundamental systems (Proc. Intern. Meeting, Santiago, 1985), v. 1, Plenum Press, New York, 1988, 117–144 | DOI | MR
[14] Voronov B.L., Tyutin I.V., “K formulirovke kalibrovochnykh teorii obschego vida. I”, TMF, 50:3 (1982), 333 | MR
[15] Voronov B.L., Tyutin I.V., “K formulirovke kalibrovochnykh teorii obschego vida. II: Kalibrovochno-invariantnaya perenormiruemost i struktura perenormirovki”, TMF, 52:1 (1982), 14 | MR