Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2011_272_a16, author = {Jerzy Lukierski}, title = {Generalized {Wigner--In\"on\"u} contractions and {Maxwell} (super)algebras}, journal = {Informatics and Automation}, pages = {194--201}, publisher = {mathdoc}, volume = {272}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a16/} }
Jerzy Lukierski. Generalized Wigner--In\"on\"u contractions and Maxwell (super)algebras. Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 194-201. http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a16/
[1] Inönü E., Wigner E.P., “On the contraction of groups and their representations”, Proc. Nat. Acad. Sci. USA, 39 (1953), 510 | DOI | MR | Zbl
[2] Saletan E.J., “Contraction of Lie groups”, J. Math. Phys., 2 (1961), 1 | DOI | MR | Zbl
[3] Drinfel'd V.G., “Quantum groups”, Proc. Intern. Congr. Math., Berkeley (USA), 1986, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR
[4] Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178 ; Reshetikhin N.Yu., Takhtadzhyan L.D., Faddeev L.D., “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1:1 (1990), 193–225 | MR | Zbl
[5] Lukierski J., Ruegg H., Nowicki A., Tolstoy V.N., “$q$-Deformation of Poincaré algebra”, Phys. Lett. B, 264 (1991), 331 | DOI | MR
[6] Lukierski J., Nowicki A., Ruegg H., “New quantum Poincaré algebra and $\kappa $-deformed field theory”, Phys. Lett. B, 293 (1992), 344 | DOI | MR | Zbl
[7] de Montigny M., Patera J., “Discrete and continuous graded contractions of Lie algebras and superalgebras”, J. Phys. A: Math. and Gen., 24 (1991), 525 | DOI | MR | Zbl
[8] Moody R.V., Patera J., “Discrete and continuous graded contractions of representations of Lie algebras”, J. Phys. A: Math. and Gen., 24 (1991), 2227 | DOI | MR | Zbl
[9] Weimar-Woods E., “Contractions of Lie algebras: Generalized Inönü–Wigner contractions versus graded contractions”, J. Math. Phys., 36 (1995), 4519 | DOI | MR | Zbl
[10] Weimar-Woods E., “Contractions, generalized Inönü–Wigner contractions and deformations of finite-dimensional Lie algebras”, Rev. Math. Phys., 12 (2000), 1505 | MR | Zbl
[11] de Azcárraga J.A., Izquierdo J.M., Picón M., Varela O., “Expansions of algebras and superalgebras and some applications”, Intern. J. Theor. Phys., 46 (2007), 2738 | DOI | MR | Zbl
[12] Bacry R., Combe P., Richard J.L., “Group-theoretical analysis of elementary particles in an external electromagnetic field. I: The relativistic particle in a constant and uniform field”, Nuovo Cimento A, 67 (1970), 267 | DOI | MR | Zbl
[13] Schrader R., “The Maxwell group and the quantum theory of particles in classical homogeneous electromagnetic fields”, Fortschr. Phys., 20 (1972), 701 | DOI | MR
[14] Beckers J., Hussin V., “Minimal electromagnetic coupling schemes. II: Relativistic and nonrelativistic Maxwell groups”, J. Math. Phys., 24 (1983), 1295 | DOI | MR
[15] Soroka D.V., Soroka V.A., “Semi-simple extension of the (super) Poincaré algebra”, Adv. High Energy Phys., 2009, 234147 | MR | Zbl
[16] Bonanos S., Gomis J., Kamimura K., Lukierski J., “Maxwell superalgebra and superparticles in constant gauge backgrounds”, Phys. Rev. Lett., 104 (2010), 090401 | DOI | MR
[17] Bonanos S., Gomis J., “A note on the Chevalley–Eilenberg cohomology for the Galilei and Poincaré algebras”, J. Phys. A: Math. and Theor., 42 (2009), 145206 | DOI | MR | Zbl
[18] Bonanos S., Gomis J., “Infinite sequence of Poincaré group extensions: structure and dynamics”, J. Phys. A: Math. and Theor., 43 (2010), 015201 | DOI | MR | Zbl
[19] Gomis J., Kamimura K., Lukierski J., “Deformations of Maxwell algebra and their dynamical realizations”, J. High Energy Phys., 2009, no. 8, 039 | DOI | MR
[20] Soroka D.V., Soroka V.A., “Tensor extension of the Poincaré algebra”, Phys. Lett. B, 607 (2005), 302 | DOI | MR | Zbl
[21] de Azcárraga J.A., Lukierski J., “Galilean superconformal symmetries”, Phys. Lett. B, 678 (2009), 411 | DOI | MR
[22] Bonanos S., Gomis J., Kamimura K., Lukierski J., Deformations of Maxwell superalgebras and their applications, E-print, 2010, arXiv: 1005.3714 [hep-th] | MR
[23] Soroka D.V., Soroka V.A., Semi-simple $o(N)$-extended super-Poincaré algebra, E-print, 2010, arXiv: 1004.3194 [hep-th]