An affinity for affine quantum gravity
Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 180-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main principle of affine quantum gravity is the strict positivity of the matrix $\{\hat g_{ab}(x)\}$ composed of the spatial components of the local metric operator. Canonical commutation relations are incompatible with this principle, and they can be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational constraint operators is formulated quite naturally as a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. Although perturbatively nonrenormalizable, gravity may possibly be understood nonperturbatively from a hard-core perspective that has proved valuable for specialized models.
@article{TRSPY_2011_272_a14,
     author = {John R. Klauder},
     title = {An affinity for affine quantum gravity},
     journal = {Informatics and Automation},
     pages = {180--187},
     publisher = {mathdoc},
     volume = {272},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a14/}
}
TY  - JOUR
AU  - John R. Klauder
TI  - An affinity for affine quantum gravity
JO  - Informatics and Automation
PY  - 2011
SP  - 180
EP  - 187
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a14/
LA  - en
ID  - TRSPY_2011_272_a14
ER  - 
%0 Journal Article
%A John R. Klauder
%T An affinity for affine quantum gravity
%J Informatics and Automation
%D 2011
%P 180-187
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a14/
%G en
%F TRSPY_2011_272_a14
John R. Klauder. An affinity for affine quantum gravity. Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 180-187. http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a14/

[1] String theory, Wikipedia: The Free Encyclopedia. Jan. 5, 2011 http://en.wikipedia.org/w/index.php?title=String\textunderscore theory&oldid=406091132

[2] Polchinski J., String theory, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1998

[3] Loop quantum gravity, Wikipedia: The Free Encyclopedia. Jan. 9, 2011 http://en.wikipedia.org/w/index.php?title=Loop\textunderscore quantum\textunderscore gravity&oldid=406894581

[4] Rovelli C., Quantum gravity, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[5] Klauder J.R., “Noncanonical quantization of gravity. I: Foundations of affine quantum gravity”, J. Math. Phys., 40 (1999), 5860, arXiv: gr-qc/9906013 | DOI | MR | Zbl

[6] Klauder J.R., “Noncanonical quantization of gravity. II: Constraints and the physical Hilbert space”, J. Math. Phys., 42 (2001), 4440, arXiv: gr-qc/0102041 | DOI | MR | Zbl

[7] Klauder J.R., “Ultralocal fields and their relevance for reparametrization-invariant quantum field theory”, J. Phys. A: Math. and Gen., 34 (2001), 3277, arXiv: quant-ph/0012076 | DOI | MR | Zbl

[8] Aronszajn N., “La théorie des noyaux reproduisants et ses applications. Première partie”, Proc. Cambridge Philos. Soc., 39 (1943), 133 | DOI | MR

[9] Aronszajn N., “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68 (1950), 337 | DOI | MR | Zbl

[10] Meschkowski H., Hilbertsche Räume mit Kernfunktion, Springer, Berlin, 1962 | MR | Zbl

[11] Klauder J.R., “Quantization = Geometry + Probability”, Probabilistic methods in quantum field theory and quantum gravity, eds. P.H. Damgaard, H. Hüffel, A. Rosenblum, Plenum Press, New York, 1990, 73–85 | DOI | MR

[12] Watson G., Klauder J.R., “Metric and curvature in gravitational phase space”, Class. and Quantum Grav., 19 (2002), 3617 | DOI | MR | Zbl

[13] Klauder J.R., “Universal procedure for enforcing quantum constraints”, Nucl. Phys. B, 547 (1999), 397, arXiv: hep-th/9901010 | DOI | MR | Zbl

[14] Klauder J.R., “Coherent state quantization of constraint systems”, Ann. Phys., 254 (1997), 419, arXiv: quant-ph/9604033 | DOI | MR | Zbl

[15] Klauder J.R., “Quantization of constrained systems”, Methods of quantization, Lect. Notes Phys., 572, Springer, Berlin, 2001, 143–182, arXiv: hep-th/0003297 | DOI | MR | Zbl

[16] Little J.S., Klauder J.R., “Elementary model of constraint quantization with an anomaly”, Phys. Rev. D, 71 (2005), 085014 | DOI | MR

[17] Klauder J.R., “Field structure through model studies: Aspects of nonrenormalizable theories”, Acta phys. Austriaca. Suppl., 11 (1973), 341

[18] Klauder J.R., “On the meaning of a non-renormalizable theory of gravitation”, Gen. Relativ. and Gravit., 6 (1975), 13 | DOI | MR

[19] Klauder J.R., “Continuous and discontinuous perturbations”, Science, 199 (1978), 735 | DOI

[20] Klauder J.R., Beyond conventional quantization, Cambridge Univ. Press, Cambridge, 2000, 2005 | MR | Zbl

[21] Ladyženskaja O.A., Solonnikov V.A., Ural'ceva N.N., Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl

[22] Klauder J.R., “Taming nonrenormalizability”, J. Phys. A.: Math. and Theor., 42 (2009), 335208, arXiv: 0811.3386 | DOI | MR | Zbl

[23] Klauder J.R., “Rethinking renormalization”, The legacy of Alladi Ramakrishnan in the mathematical sciences, eds. K. Alladi, J.R. Klauder, C.R. Rao, Springer, New York, 2010, 503–528, arXiv: 0904.2869 | DOI | MR

[24] Fernández R., Fröhlich J., Sokal A.D., Random walks, critical phenomena, and triviality in quantum field theory, Springer, Berlin, 1992 | MR

[25] Klauder J.R., “Weak correspondence principle”, J. Math. Phys., 8 (1967), 2392 | DOI