Phase transitions and theta vacuum energy
Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 9-19

Voir la notice de l'article provenant de la source Math-Net.Ru

The analytic behaviour of $\theta$-vacuum energy is related to the existence of phase transitions in QCD and $\mathbb C\mathrm P^N$ sigma models. The absence of singularities different from Lee–Yang zeros only permits $\wedge$ cusp singularities in the vacuum energy density and never $\vee$ cusps. This fact, together with the Vafa–Witten diamagnetic inequality, provides a key missing link in the Vafa–Witten proof of parity symmetry conservation in vector-like gauge theories and $\mathbb C\mathrm P^N$ sigma models. However, this property does not exclude the existence of a first phase transition at $\theta=\pi$ or a second order phase transition at $\theta=0$, which might be very relevant for interpretation of the anomalous behaviour of the topological susceptibility in the $\mathbb C\mathrm P^1$ sigma model.
@article{TRSPY_2011_272_a1,
     author = {Miguel Aguado and Manuel Asorey},
     title = {Phase transitions and theta vacuum energy},
     journal = {Informatics and Automation},
     pages = {9--19},
     publisher = {mathdoc},
     volume = {272},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a1/}
}
TY  - JOUR
AU  - Miguel Aguado
AU  - Manuel Asorey
TI  - Phase transitions and theta vacuum energy
JO  - Informatics and Automation
PY  - 2011
SP  - 9
EP  - 19
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a1/
LA  - en
ID  - TRSPY_2011_272_a1
ER  - 
%0 Journal Article
%A Miguel Aguado
%A Manuel Asorey
%T Phase transitions and theta vacuum energy
%J Informatics and Automation
%D 2011
%P 9-19
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a1/
%G en
%F TRSPY_2011_272_a1
Miguel Aguado; Manuel Asorey. Phase transitions and theta vacuum energy. Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 9-19. http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a1/