Optimal synthesis in an infinite-dimensional space
Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 40-58

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of optimal control problems and Hamiltonian systems generated by these problems in the space $l_2$, we prove the existence of extremals with a countable number of switchings on a finite time interval. The optimal synthesis that we construct in the space $l_2$ forms a fiber bundle with piecewise smooth two-dimensional fibers consisting of extremals with a countable number of switchings over an infinite-dimensional basis of singular extremals.
@article{TRSPY_2010_271_a4,
     author = {V. F. Borisov and M. I. Zelikin and L. A. Manita},
     title = {Optimal synthesis in an infinite-dimensional space},
     journal = {Informatics and Automation},
     pages = {40--58},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a4/}
}
TY  - JOUR
AU  - V. F. Borisov
AU  - M. I. Zelikin
AU  - L. A. Manita
TI  - Optimal synthesis in an infinite-dimensional space
JO  - Informatics and Automation
PY  - 2010
SP  - 40
EP  - 58
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a4/
LA  - ru
ID  - TRSPY_2010_271_a4
ER  - 
%0 Journal Article
%A V. F. Borisov
%A M. I. Zelikin
%A L. A. Manita
%T Optimal synthesis in an infinite-dimensional space
%J Informatics and Automation
%D 2010
%P 40-58
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a4/
%G ru
%F TRSPY_2010_271_a4
V. F. Borisov; M. I. Zelikin; L. A. Manita. Optimal synthesis in an infinite-dimensional space. Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 40-58. http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a4/