Construction of a~system of linear differential equations from a~scalar equation
Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 335-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

As is well known, given a Fuchsian differential equation, one can construct a Fuchsian system with the same singular points and monodromy. In the present paper, this fact is extended to the case of linear differential equations with irregular singularities.
@article{TRSPY_2010_271_a21,
     author = {I. V. V'yugin and R. R. Gontsov},
     title = {Construction of a~system of linear differential equations from a~scalar equation},
     journal = {Informatics and Automation},
     pages = {335--351},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a21/}
}
TY  - JOUR
AU  - I. V. V'yugin
AU  - R. R. Gontsov
TI  - Construction of a~system of linear differential equations from a~scalar equation
JO  - Informatics and Automation
PY  - 2010
SP  - 335
EP  - 351
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a21/
LA  - ru
ID  - TRSPY_2010_271_a21
ER  - 
%0 Journal Article
%A I. V. V'yugin
%A R. R. Gontsov
%T Construction of a~system of linear differential equations from a~scalar equation
%J Informatics and Automation
%D 2010
%P 335-351
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a21/
%G ru
%F TRSPY_2010_271_a21
I. V. V'yugin; R. R. Gontsov. Construction of a~system of linear differential equations from a~scalar equation. Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 335-351. http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a21/

[1] Anosov D.V., Bolibruch A.A., The Riemann–Hilbert problem, Aspects Math., 22, Vieweg, Braunschweig; Wiesbaden, 1994 | DOI | MR | Zbl

[2] Balser W., Jurkat W.B., Lutz D.A., “A general theory of invariants for meromorphic differential equations. I: Formal invariants”, Funkc. Ekvacioj., 22:2 (1979), 197–221 | MR | Zbl

[3] Bolibrukh A.A., 21-ya problema Gilberta dlya lineinykh fuksovykh sistem, Tr. MIAN, 206, Nauka, M., 1994 | Zbl

[4] Bolibrukh A.A., Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009

[5] Bolibruch A.A., Malek S., Mitschi C., “On the generalized Riemann–Hilbert problem with irregular singularities”, Expo. Math., 24 (2006), 235–272 | DOI | MR | Zbl

[6] Vazov V., Asimptoticheskie razlozheniya reshenii differentsialnykh uravnenii, Mir, M., 1968

[7] van der Put M., Saito M.-H., “Moduli spaces for linear differential equations and the Painlevé equations”, Ann. Inst. Fourier., 59:7 (2009), 2611–2667 | DOI | MR | Zbl

[8] Gontsov R.R., “Utochnennye neravenstva Fuksa dlya sistem lineinykh differentsialnykh uravnenii”, Izv. RAN. Ser. mat., 68:2 (2004), 39–52 | DOI | MR | Zbl

[9] Deligne P., Equations différentielles à points singuliers réguliers, Lect. Notes Math., 163, Springer, Berlin, 1970 | MR | Zbl

[10] Malgrange B., “Sur les points singuliers des équations différentielles”, Enseign. Math., 20 (1974), 147–176 | MR | Zbl

[11] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[12] Jurkat W.B., Lutz D.A., “On the order of solutions of analytic linear differential equations”, Proc. London Math. Soc., 22:3 (1971), 465–482 | DOI | MR | Zbl