Existence and properties of inverse mappings
Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 18-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlinear mappings in Banach spaces are considered. The covering property, metric regularity, and the existence of a continuous right inverse are considered for these mappings under various assumptions of smoothness. Several regularity conditions that guarantee the local covering property and the existence of a continuous right inverse are presented.
@article{TRSPY_2010_271_a2,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {Existence and properties of inverse mappings},
     journal = {Informatics and Automation},
     pages = {18--28},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a2/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - Existence and properties of inverse mappings
JO  - Informatics and Automation
PY  - 2010
SP  - 18
EP  - 28
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a2/
LA  - ru
ID  - TRSPY_2010_271_a2
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T Existence and properties of inverse mappings
%J Informatics and Automation
%D 2010
%P 18-28
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a2/
%G ru
%F TRSPY_2010_271_a2
A. V. Arutyunov; S. E. Zhukovskiy. Existence and properties of inverse mappings. Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 18-28. http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a2/

[1] Mordukhovich B.S., Variational analysis and generalized differentiation, v. 1, Springer, Berlin, 2005 | MR

[2] Arutyunov A., Avakov E., Gel'man B., Dmitruk A., Obukhovskii V., “Locally covering maps in metric spaces and coincidence points”, J. Fixed Point Theory and Appl., 5:1 (2009), 105–127 | DOI | MR | Zbl

[3] Tikhomirov V.M., “Teorema Lyusternika o kasatelnom prostranstve i nekotorye ee modifikatsii”, Optimalnoe upravlenie: Matematicheskie voprosy upravleniya proizvodstvom, Vyp. 7, Izd-vo MGU, M., 1977, 22–30

[4] Klatte D., Kummer B., Nonsmooth equations in optimization. Regularity, calculus, methods and applications, Kluwer, Dordrecht, 2002 | MR | Zbl

[5] Facchinei F., Pang J.-S., Finite-dimensional variational inequalities and complementarity problems, Springer, New York, 2003

[6] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[7] Gurevich V., Volmen G., Teoriya razmernosti, Izd-vo inostr. lit., M., 1948

[8] Arutyunov A.V., Magaril-Ilyaev G.G., Tikhomirov V.M., Printsip maksimuma Pontryagina, Faktorial, M., 2006

[9] Mordukhovich B.Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl

[10] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[11] Avakov E.R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Mat. zametki, 47:5 (1990), 3–13 | MR | Zbl

[12] Arutyunov A.V., “Teorema o neyavnoi funktsii bez apriornykh predpolozhenii normalnosti”, ZhVMiMF, 46:2 (2006), 205–215 | MR | Zbl

[13] Arutyunov A.V., “Teorema o neyavnoi funktsii kak realizatsiya printsipa Lagranzha. Anormalnye tochki”, Mat. sb., 191:1 (2000), 3–26 | DOI | MR | Zbl

[14] Arutyunov A.V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[15] Arutyunov A.V., “Usloviya vtorogo poryadka v ekstremalnykh zadachakh s konechnomernym obrazom. 2-normalnye otobrazheniya”, Izv. RAN. Ser. mat., 60:1 (1996), 37–62 | DOI | MR | Zbl

[16] Avakov E.R., Agrachev A.A., Arutyunov A.V., “Mnozhestvo urovnya gladkogo otobrazheniya v okrestnosti osoboi tochki i nuli kvadratichnogo otobrazheniya”, Mat. sb., 182:8 (1991), 1091–1104 | Zbl