Classical characteristics of the Bellman equation in constructions of grid optimal synthesis
Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 259-277
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider optimal control problems with fixed final time and terminal–integral cost functional, and address the question of constructing a grid optimal synthesis (a universal feedback) on the basis of classical characteristics of the Bellman equation. To construct an optimal synthesis, we propose a numerical algorithm that relies on the necessary optimality conditions (the Pontryagin maximum principle) and sufficient conditions in the Hamiltonian form. We obtain estimates for the efficiency of the numerical method. The method is illustrated by an example of the numerical solution of a nonlinear optimal control problem.
@article{TRSPY_2010_271_a17,
author = {N. N. Subbotina and T. B. Tokmantsev},
title = {Classical characteristics of the {Bellman} equation in constructions of grid optimal synthesis},
journal = {Informatics and Automation},
pages = {259--277},
publisher = {mathdoc},
volume = {271},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a17/}
}
TY - JOUR AU - N. N. Subbotina AU - T. B. Tokmantsev TI - Classical characteristics of the Bellman equation in constructions of grid optimal synthesis JO - Informatics and Automation PY - 2010 SP - 259 EP - 277 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a17/ LA - ru ID - TRSPY_2010_271_a17 ER -
%0 Journal Article %A N. N. Subbotina %A T. B. Tokmantsev %T Classical characteristics of the Bellman equation in constructions of grid optimal synthesis %J Informatics and Automation %D 2010 %P 259-277 %V 271 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a17/ %G ru %F TRSPY_2010_271_a17
N. N. Subbotina; T. B. Tokmantsev. Classical characteristics of the Bellman equation in constructions of grid optimal synthesis. Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 259-277. http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a17/