Classical characteristics of the Bellman equation in constructions of grid optimal synthesis
Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 259-277

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider optimal control problems with fixed final time and terminal–integral cost functional, and address the question of constructing a grid optimal synthesis (a universal feedback) on the basis of classical characteristics of the Bellman equation. To construct an optimal synthesis, we propose a numerical algorithm that relies on the necessary optimality conditions (the Pontryagin maximum principle) and sufficient conditions in the Hamiltonian form. We obtain estimates for the efficiency of the numerical method. The method is illustrated by an example of the numerical solution of a nonlinear optimal control problem.
@article{TRSPY_2010_271_a17,
     author = {N. N. Subbotina and T. B. Tokmantsev},
     title = {Classical characteristics of the {Bellman} equation in constructions of grid optimal synthesis},
     journal = {Informatics and Automation},
     pages = {259--277},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a17/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - T. B. Tokmantsev
TI  - Classical characteristics of the Bellman equation in constructions of grid optimal synthesis
JO  - Informatics and Automation
PY  - 2010
SP  - 259
EP  - 277
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a17/
LA  - ru
ID  - TRSPY_2010_271_a17
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A T. B. Tokmantsev
%T Classical characteristics of the Bellman equation in constructions of grid optimal synthesis
%J Informatics and Automation
%D 2010
%P 259-277
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a17/
%G ru
%F TRSPY_2010_271_a17
N. N. Subbotina; T. B. Tokmantsev. Classical characteristics of the Bellman equation in constructions of grid optimal synthesis. Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 259-277. http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a17/