Stability of inflectional elasticae centered at vertices or inflection points
Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 187-203

Voir la notice de l'article provenant de la source Math-Net.Ru

Stability conditions for inflectional Euler's elasticae centered at vertices or inflection points are obtained. Theoretical results are compared with experimental data for elastic rods.
@article{TRSPY_2010_271_a13,
     author = {Yu. L. Sachkov and S. V. Levyakov},
     title = {Stability of inflectional elasticae centered at vertices or inflection points},
     journal = {Informatics and Automation},
     pages = {187--203},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a13/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
AU  - S. V. Levyakov
TI  - Stability of inflectional elasticae centered at vertices or inflection points
JO  - Informatics and Automation
PY  - 2010
SP  - 187
EP  - 203
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a13/
LA  - ru
ID  - TRSPY_2010_271_a13
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%A S. V. Levyakov
%T Stability of inflectional elasticae centered at vertices or inflection points
%J Informatics and Automation
%D 2010
%P 187-203
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a13/
%G ru
%F TRSPY_2010_271_a13
Yu. L. Sachkov; S. V. Levyakov. Stability of inflectional elasticae centered at vertices or inflection points. Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 187-203. http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a13/