Linear problem of tracking a~given motion under an integral constraint on control
Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 181-186

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of optimally tracking a given vector function by means of a generalized projection of the trajectory of a linear controlled object with an integral constraint on the control. The deviation from a given motion is measured in the metric of the space $C^m[0,T]$ of continuous vector functions of appropriate dimension $m$. We describe a constructive method for solving this optimization problem with a given accuracy.
@article{TRSPY_2010_271_a12,
     author = {M. S. Nikol'skii},
     title = {Linear problem of tracking a~given motion under an integral constraint on control},
     journal = {Informatics and Automation},
     pages = {181--186},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a12/}
}
TY  - JOUR
AU  - M. S. Nikol'skii
TI  - Linear problem of tracking a~given motion under an integral constraint on control
JO  - Informatics and Automation
PY  - 2010
SP  - 181
EP  - 186
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a12/
LA  - ru
ID  - TRSPY_2010_271_a12
ER  - 
%0 Journal Article
%A M. S. Nikol'skii
%T Linear problem of tracking a~given motion under an integral constraint on control
%J Informatics and Automation
%D 2010
%P 181-186
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a12/
%G ru
%F TRSPY_2010_271_a12
M. S. Nikol'skii. Linear problem of tracking a~given motion under an integral constraint on control. Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 181-186. http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a12/