Tracking a~reference solution of a~control system of phase field equations
Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 148-158

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of tracking a reference solution of a dynamical system described by a pair of distributed differential equations, the phase field equations. To solve this problem, we propose an algorithm based on Yu. S. Osipov's theory of dynamic inversion and on N. N. Krasovskii's extremal shift method developed in the theory of positional differential games.
@article{TRSPY_2010_271_a10,
     author = {V. I. Maksimov},
     title = {Tracking a~reference solution of a~control system of phase field equations},
     journal = {Informatics and Automation},
     pages = {148--158},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a10/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - Tracking a~reference solution of a~control system of phase field equations
JO  - Informatics and Automation
PY  - 2010
SP  - 148
EP  - 158
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a10/
LA  - ru
ID  - TRSPY_2010_271_a10
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T Tracking a~reference solution of a~control system of phase field equations
%J Informatics and Automation
%D 2010
%P 148-158
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a10/
%G ru
%F TRSPY_2010_271_a10
V. I. Maksimov. Tracking a~reference solution of a~control system of phase field equations. Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 148-158. http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a10/