Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2010_269_a4, author = {E. A. Volkov}, title = {On a~grid-method solution of the {Laplace} equation in an infinite rectangular cylinder under periodic boundary conditions}, journal = {Informatics and Automation}, pages = {63--70}, publisher = {mathdoc}, volume = {269}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a4/} }
TY - JOUR AU - E. A. Volkov TI - On a~grid-method solution of the Laplace equation in an infinite rectangular cylinder under periodic boundary conditions JO - Informatics and Automation PY - 2010 SP - 63 EP - 70 VL - 269 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a4/ LA - ru ID - TRSPY_2010_269_a4 ER -
%0 Journal Article %A E. A. Volkov %T On a~grid-method solution of the Laplace equation in an infinite rectangular cylinder under periodic boundary conditions %J Informatics and Automation %D 2010 %P 63-70 %V 269 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a4/ %G ru %F TRSPY_2010_269_a4
E. A. Volkov. On a~grid-method solution of the Laplace equation in an infinite rectangular cylinder under periodic boundary conditions. Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 63-70. http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a4/
[1] Keldysh M.V., “O razreshimosti i ustoichivosti zadachi Dirikhle”, UMN, 1940, no. 8, 171–231
[2] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR
[3] Volkov E.A., “O differentsialnykh svoistvakh reshenii uravnenii Laplasa i Puassona na parallelepipede i effektivnykh otsenkakh pogreshnosti metoda setok”, Tr. MIAN, 105, 1969, 46–65 | Zbl
[4] Mikhailov V.P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR | Zbl
[5] Samarskii A.A., Andreev V.B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl