Spaces of functions of fractional smoothness on an irregular domain
Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 31-51
Voir la notice de l'article provenant de la source Math-Net.Ru
On an irregular domain $G\subset\mathbb R^n$ of a certain type, we introduce spaces of functions of fractional smoothness $s>0$. We prove embedding theorems relating these spaces to the Sobolev spaces $W_p^m(G)$ and Lebesgue spaces $L_p(G)$.
@article{TRSPY_2010_269_a2,
author = {O. V. Besov},
title = {Spaces of functions of fractional smoothness on an irregular domain},
journal = {Informatics and Automation},
pages = {31--51},
publisher = {mathdoc},
volume = {269},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a2/}
}
O. V. Besov. Spaces of functions of fractional smoothness on an irregular domain. Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 31-51. http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a2/