Spaces of functions of fractional smoothness on an irregular domain
Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 31-51

Voir la notice de l'article provenant de la source Math-Net.Ru

On an irregular domain $G\subset\mathbb R^n$ of a certain type, we introduce spaces of functions of fractional smoothness $s>0$. We prove embedding theorems relating these spaces to the Sobolev spaces $W_p^m(G)$ and Lebesgue spaces $L_p(G)$.
@article{TRSPY_2010_269_a2,
     author = {O. V. Besov},
     title = {Spaces of functions of fractional smoothness on an irregular domain},
     journal = {Informatics and Automation},
     pages = {31--51},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a2/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Spaces of functions of fractional smoothness on an irregular domain
JO  - Informatics and Automation
PY  - 2010
SP  - 31
EP  - 51
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a2/
LA  - ru
ID  - TRSPY_2010_269_a2
ER  - 
%0 Journal Article
%A O. V. Besov
%T Spaces of functions of fractional smoothness on an irregular domain
%J Informatics and Automation
%D 2010
%P 31-51
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a2/
%G ru
%F TRSPY_2010_269_a2
O. V. Besov. Spaces of functions of fractional smoothness on an irregular domain. Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 31-51. http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a2/