Sharpening of the estimates for relative widths of classes of differentiable functions
Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 242-253

Voir la notice de l'article provenant de la source Math-Net.Ru

We improve the earlier obtained upper estimates for the least value of the coefficient $M$ for which the Kolmogorov widths $d_n(W_C^r,C)$ of the function class $W_C^r$ are equal to the relative widths $K_n(W_C^r,MW_C^j,C)$ of the class $W_C^r$ with respect to the class $MW_C^j$, $j$.
@article{TRSPY_2010_269_a19,
     author = {Yu. N. Subbotin and S. A. Telyakovskii},
     title = {Sharpening of the estimates for relative widths of classes of differentiable functions},
     journal = {Informatics and Automation},
     pages = {242--253},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a19/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - S. A. Telyakovskii
TI  - Sharpening of the estimates for relative widths of classes of differentiable functions
JO  - Informatics and Automation
PY  - 2010
SP  - 242
EP  - 253
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a19/
LA  - ru
ID  - TRSPY_2010_269_a19
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A S. A. Telyakovskii
%T Sharpening of the estimates for relative widths of classes of differentiable functions
%J Informatics and Automation
%D 2010
%P 242-253
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a19/
%G ru
%F TRSPY_2010_269_a19
Yu. N. Subbotin; S. A. Telyakovskii. Sharpening of the estimates for relative widths of classes of differentiable functions. Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 242-253. http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a19/