Sharpening of the estimates for relative widths of classes of differentiable functions
Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 242-253
Voir la notice de l'article provenant de la source Math-Net.Ru
We improve the earlier obtained upper estimates for the least value of the coefficient $M$ for which the Kolmogorov widths $d_n(W_C^r,C)$ of the function class $W_C^r$ are equal to the relative widths $K_n(W_C^r,MW_C^j,C)$ of the class $W_C^r$ with respect to the class $MW_C^j$, $j$.
@article{TRSPY_2010_269_a19,
author = {Yu. N. Subbotin and S. A. Telyakovskii},
title = {Sharpening of the estimates for relative widths of classes of differentiable functions},
journal = {Informatics and Automation},
pages = {242--253},
publisher = {mathdoc},
volume = {269},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a19/}
}
TY - JOUR AU - Yu. N. Subbotin AU - S. A. Telyakovskii TI - Sharpening of the estimates for relative widths of classes of differentiable functions JO - Informatics and Automation PY - 2010 SP - 242 EP - 253 VL - 269 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a19/ LA - ru ID - TRSPY_2010_269_a19 ER -
Yu. N. Subbotin; S. A. Telyakovskii. Sharpening of the estimates for relative widths of classes of differentiable functions. Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 242-253. http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a19/