Multiple positive solutions of an elliptic equation with a~convex--concave nonlinearity containing a~sign-changing term
Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 167-180

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence of multiple positive solutions to a nonlinear Dirichlet problem for the $p$-Laplacian (in a bounded domain in $\mathbb R^N$) with a concave nonlinearity and with a nonlinear perturbation involving a function of the spatial variable whose sign can change the character of concavity. Under two different sets of conditions imposed on the perturbation, we prove the existence of two and three positive solutions, respectively.
@article{TRSPY_2010_269_a13,
     author = {V. F. Lubyshev},
     title = {Multiple positive solutions of an elliptic equation with a~convex--concave nonlinearity containing a~sign-changing term},
     journal = {Informatics and Automation},
     pages = {167--180},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a13/}
}
TY  - JOUR
AU  - V. F. Lubyshev
TI  - Multiple positive solutions of an elliptic equation with a~convex--concave nonlinearity containing a~sign-changing term
JO  - Informatics and Automation
PY  - 2010
SP  - 167
EP  - 180
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a13/
LA  - ru
ID  - TRSPY_2010_269_a13
ER  - 
%0 Journal Article
%A V. F. Lubyshev
%T Multiple positive solutions of an elliptic equation with a~convex--concave nonlinearity containing a~sign-changing term
%J Informatics and Automation
%D 2010
%P 167-180
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a13/
%G ru
%F TRSPY_2010_269_a13
V. F. Lubyshev. Multiple positive solutions of an elliptic equation with a~convex--concave nonlinearity containing a~sign-changing term. Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 167-180. http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a13/