Convex hulls of surfaces with boundaries and corners and singularities of transitivity zone in~$\mathbb R^3$
Informatics and Automation, Differential equations and topology. I, Tome 268 (2010), pp. 284-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generic singularities of the boundary of the local transitivity set of a control system on two- and three-dimensional manifolds are classified. The indicatrices of the system are assumed to be given by generic equations and inequalities.
@article{TRSPY_2010_268_a18,
     author = {V. M. Zakalyukin and A. N. Kurbatskii},
     title = {Convex hulls of surfaces with boundaries and corners and singularities of transitivity zone in~$\mathbb R^3$},
     journal = {Informatics and Automation},
     pages = {284--303},
     publisher = {mathdoc},
     volume = {268},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a18/}
}
TY  - JOUR
AU  - V. M. Zakalyukin
AU  - A. N. Kurbatskii
TI  - Convex hulls of surfaces with boundaries and corners and singularities of transitivity zone in~$\mathbb R^3$
JO  - Informatics and Automation
PY  - 2010
SP  - 284
EP  - 303
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a18/
LA  - ru
ID  - TRSPY_2010_268_a18
ER  - 
%0 Journal Article
%A V. M. Zakalyukin
%A A. N. Kurbatskii
%T Convex hulls of surfaces with boundaries and corners and singularities of transitivity zone in~$\mathbb R^3$
%J Informatics and Automation
%D 2010
%P 284-303
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a18/
%G ru
%F TRSPY_2010_268_a18
V. M. Zakalyukin; A. N. Kurbatskii. Convex hulls of surfaces with boundaries and corners and singularities of transitivity zone in~$\mathbb R^3$. Informatics and Automation, Differential equations and topology. I, Tome 268 (2010), pp. 284-303. http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a18/

[1] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, 2-e izd., MTsNMO, M., 2004

[2] Arnold V. I., “Teoriya katastrof”, Dinamicheskie sistemy – 5, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 5, VINITI, M., 1986, 219–277 | MR

[3] Giblin P. J., Zakalyukin V. M., “Singularities of centre symmetry sets”, Proc. London Math. Soc. Ser. 3, 90 (2005), 132–166 | DOI | MR | Zbl

[4] Givental A. B., “Osobye lagranzhevy mnogoobraziya i ikh lagranzhevy otobrazheniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 33, VINITI, M., 1988, 55–112 | MR | Zbl

[5] Goryunov V. V., Zakalyukin V. M., “Simple symmetric matrix singularities and the subgroups of Weyl groups $A_\mu$, $D_\mu$, $E_\mu$”, Moscow Math. J., 3:2 (2003), 507–530 | MR | Zbl

[6] Goryunov V. V., Zakalyukin V. M., “Ob ustoichivosti proektsii lagranzhevykh mnogoobrazii s osobennostyami”, Funkts. analiz i ego pril., 38:4 (2004), 13–21 | DOI | MR | Zbl

[7] Davydov A. A., Qualitative theory of control systems, Transl. Math. Monogr., 141, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[8] Davydov A. A., “Osobennosti polei predelnykh napravlenii dvumernykh upravlyaemykh sistem”, Mat. sb., 136(178):4 (1988), 478–499 | MR | Zbl

[9] Damon J., “$\mathcal A$-equivalence and the equivalence of sections of images and discriminants”, Singularity theory and its applications (Warwick, 1989), Pt. 1, Lect. Notes Math., 1462, Springer, Berlin, 1991, 93–121 | DOI | MR

[10] Zakalyukin V. M., “Osobennosti vypuklykh obolochek gladkikh mnogoobrazii”, Funkts. analiz i ego pril., 11:3 (1977), 76–77 | MR | Zbl

[11] Zakalyukin V. M., Kurbatskii A. N., “Osobennosti ogibayuschikh semeistv ploskostei v teorii upravleniya”, Tr. MIAN, 262, 2008, 73–86 | MR | Zbl

[12] Zakalyukin V. M., Kurbatskii A. N., “Vypuklye obolochki krivykh i osobennosti mnozhestva tranzitivnosti v $\mathbb R^3$”, Sovremennye problemy matematiki i mekhaniki, 4:2 (2009), 3–23

[13] Kazaryan M. E., “Osobennosti granitsy fundamentalnykh sistem, uploscheniya proektivnykh krivykh i kletki Shuberta”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 33, VINITI, M., 1988, 215–234 | MR | Zbl

[14] Sedykh V. D., “Stabilizatsiya osobennostei vypuklykh obolochek”, Mat. sb., 135(177):4 (1988), 514–519 | MR | Zbl

[15] Scherbak O. P., “Proektivno dvoistvennye prostranstvennye krivye i lezhandrovy osobennosti”, Tr. Tbil. un-ta, 232–233, no. 13–14, 1982, 280–336