@article{TRSPY_2010_268_a15,
author = {M. Masuda},
title = {Cohomological non-rigidity of generalized real {Bott} manifolds of height~2},
journal = {Informatics and Automation},
pages = {252--257},
year = {2010},
volume = {268},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a15/}
}
M. Masuda. Cohomological non-rigidity of generalized real Bott manifolds of height 2. Informatics and Automation, Differential equations and topology. I, Tome 268 (2010), pp. 252-257. http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a15/
[1] Adams J. F., “Vector fields on spheres”, Ann. Math. Ser. 2, 75 (1962), 603–632 | DOI | MR | Zbl
[2] Atiyah M. F., “Thom complexes”, Proc. London Math. Soc. Ser. 3, 11 (1961), 291–310 | DOI | MR | Zbl
[3] Choi S., Masuda M., Suh D. Y., “Topological classification of generalized Bott towers”, Trans. Amer. Math. Soc., 362 (2010), 1097–1112 | DOI | MR | Zbl
[4] Husemoller D., Fiber bundles, Grad. Texts Math., 20, 3rd ed., Springer, Berlin, 1993 | Zbl
[5] Kamishima Y., Masuda M., “Cohomological rigidity of real Bott manifolds”, Alg. and Geom. Topol., 9 (2009), 2479–2502 | MR | Zbl
[6] Masuda M., Classification of real Bott manifolds, E-print, 2008, arXiv: 0809.2178
[7] Masuda M., Suh D. Y., “Classification problems of toric manifolds via topology”, Toric Topology, Proc. Intern. Conf. (Osaka, 2006), Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 273–286 ; arXiv: 0709.4579 | DOI | MR | Zbl
[8] Milnor J. W., Stasheff J. D., Characteristic classes, Ann. Math. Stud., 76, Princeton Univ. Press, Princeton, NJ, 1974 | MR | Zbl