Discontinuous feedback in nonlinear control: Stabilization under persistent disturbances
Informatics and Automation, Differential equations and topology. I, Tome 268 (2010), pp. 231-251
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a nonlinear control system which, under persistently acting disturbances, can be asymptotically driven to the origin by some non-anticipating strategy with infinite memory (such a strategy determines a value of control $u(t)$ at moment $t$ using complete information on the prehistory of disturbances until moment $t$). We demonstrate that this property is equivalent to the existence of a robust stabilizing (possibly discontinuous) feedback $k(x)$.
@article{TRSPY_2010_268_a14,
author = {Yuri S. Ledyaev and Richard B. Vinter},
title = {Discontinuous feedback in nonlinear control: {Stabilization} under persistent disturbances},
journal = {Informatics and Automation},
pages = {231--251},
publisher = {mathdoc},
volume = {268},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a14/}
}
TY - JOUR AU - Yuri S. Ledyaev AU - Richard B. Vinter TI - Discontinuous feedback in nonlinear control: Stabilization under persistent disturbances JO - Informatics and Automation PY - 2010 SP - 231 EP - 251 VL - 268 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a14/ LA - ru ID - TRSPY_2010_268_a14 ER -
%0 Journal Article %A Yuri S. Ledyaev %A Richard B. Vinter %T Discontinuous feedback in nonlinear control: Stabilization under persistent disturbances %J Informatics and Automation %D 2010 %P 231-251 %V 268 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a14/ %G ru %F TRSPY_2010_268_a14
Yuri S. Ledyaev; Richard B. Vinter. Discontinuous feedback in nonlinear control: Stabilization under persistent disturbances. Informatics and Automation, Differential equations and topology. I, Tome 268 (2010), pp. 231-251. http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a14/