On synthesizing impulse controls and the theory of fast controls
Informatics and Automation, Differential equations and topology. I, Tome 268 (2010), pp. 215-230

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the theory of feedback control in the class of impulse-type inputs which allow higher derivatives of delta functions. We provide solutions based on Hamiltonian techniques in the dynamic programming form. Further we describe physically realizable approximations of the “ideal” impulse-type solutions by bounded functions which may also serve as “fast” feedback controls that solve the target control problem in arbitrarily small time.
@article{TRSPY_2010_268_a13,
     author = {A. B. Kurzhanski},
     title = {On synthesizing impulse controls and the theory of fast controls},
     journal = {Informatics and Automation},
     pages = {215--230},
     publisher = {mathdoc},
     volume = {268},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a13/}
}
TY  - JOUR
AU  - A. B. Kurzhanski
TI  - On synthesizing impulse controls and the theory of fast controls
JO  - Informatics and Automation
PY  - 2010
SP  - 215
EP  - 230
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a13/
LA  - ru
ID  - TRSPY_2010_268_a13
ER  - 
%0 Journal Article
%A A. B. Kurzhanski
%T On synthesizing impulse controls and the theory of fast controls
%J Informatics and Automation
%D 2010
%P 215-230
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a13/
%G ru
%F TRSPY_2010_268_a13
A. B. Kurzhanski. On synthesizing impulse controls and the theory of fast controls. Informatics and Automation, Differential equations and topology. I, Tome 268 (2010), pp. 215-230. http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a13/