Spectral properties of operators with polynomial invariants in real finite-dimensional spaces
Informatics and Automation, Differential equations and topology. I, Tome 268 (2010), pp. 155-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider linear operators lying in the orthogonal group of a quadratic form and study those spectral properties of such operators that can be expressed in terms of the signature of this form. We show that in the typical case these transformations are symplectic. Some of the results can be extended to the general case when the operator admits a homogeneous form of degree $\ge3$.
@article{TRSPY_2010_268_a11,
     author = {V. V. Kozlov},
     title = {Spectral properties of operators with polynomial invariants in real finite-dimensional spaces},
     journal = {Informatics and Automation},
     pages = {155--167},
     publisher = {mathdoc},
     volume = {268},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a11/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Spectral properties of operators with polynomial invariants in real finite-dimensional spaces
JO  - Informatics and Automation
PY  - 2010
SP  - 155
EP  - 167
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a11/
LA  - ru
ID  - TRSPY_2010_268_a11
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Spectral properties of operators with polynomial invariants in real finite-dimensional spaces
%J Informatics and Automation
%D 2010
%P 155-167
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a11/
%G ru
%F TRSPY_2010_268_a11
V. V. Kozlov. Spectral properties of operators with polynomial invariants in real finite-dimensional spaces. Informatics and Automation, Differential equations and topology. I, Tome 268 (2010), pp. 155-167. http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a11/

[1] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR

[2] Williamson J., “On the algebraic problem concerning the normal forms of linear dynamical systems”, Amer. J. Math., 58:1 (1936), 141–163 | DOI | MR | Zbl

[3] Kozlov V. V., “Lineinye sistemy s kvadratichnym integralom”, PMM, 56:6 (1992), 900–906 | MR | Zbl

[4] Rubanovskii V. N., “O bifurkatsii i ustoichivosti statsionarnykh dvizhenii v nekotorykh zadachakh dinamiki tverdogo tela”, PMM, 38:4 (1974), 616–627 | MR | Zbl

[5] Frobenius G., “Über lineare Substitutionen und bilineare Formen”, J. Math., 84 (1878), 1–63

[6] Pontryagin L. S., “Ermitovy operatory v prostranstve s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. mat., 8:6 (1944), 243–280 | MR | Zbl

[7] Carlson D., Schneider H., “Inertia theorems for matrices: the semidefinite case”, J. Math. Anal. and Appl., 6 (1963), 430–446 | DOI | MR | Zbl

[8] Wimmer H. K., “Inertia theorems for matrices, controllability, and linear vibrations”, Lin. Alg. and Appl., 8 (1974), 337–343 | DOI | MR | Zbl

[9] Arnold V. I., “Ob usloviyakh nelineinoi ustoichivosti ploskikh statsionarnykh krivolineinykh techenii idealnoi zhidkosti”, DAN SSSR, 162:5 (1965), 975–978 | MR | Zbl

[10] Taussky O., “A generalization of a theorem of Lyapunov”, J. Soc. Ind. and Appl. Math., 9 (1961), 640–643 | DOI | MR | Zbl

[11] Ostrowski A., Schneider H., “Some theorems on the inertia of general matrices”, J. Math. Anal. and Appl., 4 (1962), 72–84 | DOI | MR | Zbl

[12] Veil G., Klassicheskie gruppy: ikh invarianty i predstavleniya, Izd-vo inostr. lit., M., 1947

[13] Kozlov V. V., Karapetyan A. A., “O stepeni ustoichivosti”, Dif. uravneniya, 41:2 (2005), 186–192 | MR | Zbl

[14] Gantmakher F. R., Teoriya matrits, 5-e izd., Fizmatlit, M., 2004

[15] Hill G. W., “On the part of the motion of the lunar perigee which is a function of the mean motions of the Sun and Moon”, Acta math., 8:1 (1886), 1–36 | DOI | MR

[16] Kozlov V. V., Treschev D. V., Billiardy. Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo Mosk. un-ta, M., 1991 | MR | Zbl

[17] Krein M. G., “Ob odnom primenenii printsipa nepodvizhnoi tochki v teorii lineinykh preobrazovanii prostranstv s indefinitnoi metrikoi”, UMN, 5:2 (1950), 180–190 | MR | Zbl

[18] Bolotin S. V., Kozlov V. V., “Ob asimptoticheskikh resheniyakh uravnenii dinamiki”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1980, no. 4, 84–89 | MR | Zbl