Conservative Homoclinic Bifurcations and Some Applications
Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 82-96

Voir la notice de l'article provenant de la source Math-Net.Ru

We study generic unfoldings of homoclinic tangencies of two-dimensional area-preserving diffeomorphisms (conservative Newhouse phenomena) and show that they give rise to invariant hyperbolic sets of arbitrarily large Hausdorff dimension. As applications, we discuss the size of the stochastic layer of a standard map and the Hausdorff dimension of invariant hyperbolic sets for certain restricted three-body problems. We avoid involved technical details and only concentrate on the ideas of the proof of the presented results.
@article{TRSPY_2009_267_a5,
     author = {A. Gorodetski and V. Kaloshin},
     title = {Conservative {Homoclinic} {Bifurcations} and {Some} {Applications}},
     journal = {Informatics and Automation},
     pages = {82--96},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a5/}
}
TY  - JOUR
AU  - A. Gorodetski
AU  - V. Kaloshin
TI  - Conservative Homoclinic Bifurcations and Some Applications
JO  - Informatics and Automation
PY  - 2009
SP  - 82
EP  - 96
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a5/
LA  - en
ID  - TRSPY_2009_267_a5
ER  - 
%0 Journal Article
%A A. Gorodetski
%A V. Kaloshin
%T Conservative Homoclinic Bifurcations and Some Applications
%J Informatics and Automation
%D 2009
%P 82-96
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a5/
%G en
%F TRSPY_2009_267_a5
A. Gorodetski; V. Kaloshin. Conservative Homoclinic Bifurcations and Some Applications. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 82-96. http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a5/