Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2009_267_a21, author = {T. Terpai}, title = {Fibration of {Classifying} {Spaces} in the {Cobordism} {Theory} of {Singular} {Maps}}, journal = {Informatics and Automation}, pages = {280--287}, publisher = {mathdoc}, volume = {267}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a21/} }
T. Terpai. Fibration of Classifying Spaces in the Cobordism Theory of Singular Maps. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 280-287. http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a21/
[1] Ekholm T., Szűcs A., Terpai T., “Cobordisms of fold maps and maps with a prescribed number of cusps”, Kyushu J. Math., 61:2 (2007), 395–414 | DOI | MR | Zbl
[2] Jänich K., “Symmetry properties of singularities of $C^\infty$-functions”, Math. Ann., 238 (1978), 147–156 | DOI | MR | Zbl
[3] Kalmár B., “Cobordism group of fold maps of oriented 3-manifolds into the plane”, Acta math. Hungar., 117:1–2 (2007), 1–25 | DOI | MR | Zbl
[4] Ohmoto T., Saeki O., Sakuma K., “Self-intersection class for singularities and its application to fold maps”, Trans. Amer. Math. Soc., 355 (2003), 3825–3838 | DOI | MR | Zbl
[5] Rimányi R., Szűcs A., “Pontrjagin–Thom-type construction for maps with singularities”, Topology, 37 (1998), 1177–1191 | DOI | MR | Zbl
[6] Rourke C., Sanderson B., “The compression theorem. I”, Geom. and Topol., 5 (2001), 399–429 | DOI | MR | Zbl
[7] Saeki O., “Fold maps on 4-manifolds”, Comment. Math. Helv., 78 (2003), 627–647 | DOI | MR | Zbl
[8] Szűcs A., “Cobordism groups of immersions of oriented manifolds”, Acta math. Hungar., 64:2 (1994), 191–230 | DOI | MR
[9] Szűcs A., “Cobordism of singular maps”, Geom. and Topol., 12 (2008), 2379–2452 ; arxiv: math/0612152v3 | DOI | MR
[10] Szűcs A., “Elimination of singularities by cobordism”, Real and complex singularities, Contemp. Math., 354, Amer. Math. Soc., Providence, RI, 2004, 301–324 | DOI | MR
[11] Terpai T., “Cobordisms of fold maps of $2k+2$-manifolds into $\mathbb R^{3k+2}$”, Geometry and topology of caustics – Caustics' 06, Banach Center Publ., 82, Pol. Acad. Sci. Inst. Math., Warsaw, 2008, 209–213 | DOI | MR | Zbl
[12] Wall C. T. C., “A second note on symmetry of singularities”, Bull. London Math. Soc., 12 (1980), 347–354 | DOI | MR | Zbl
[13] Yamamoto T., “Classification of singular fibres of stable maps of 4-manifolds into 3-manifolds and its applications”, J. Math. Soc. Japan, 58:3 (2006), 721–742 ; http://eprints.math.sci.hokudai.ac.jp/archive/00000073/ | DOI | MR | Zbl