Fibration of Classifying Spaces in the Cobordism Theory of Singular Maps
Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 280-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the cobordism theory of singular smooth maps there exist classifying spaces (analogues of Thom spectra) depending on the set of allowed singularity types. The so-called “key fibration” introduced by A. Szűcs connects these classifying spaces for different sets of allowed singularities. Here we prove the existence of such a fibration using a new, more simple and general argument than that of Szűcs. This makes it possible to extend the range of applications to some negative codimension maps.
@article{TRSPY_2009_267_a21,
     author = {T. Terpai},
     title = {Fibration of {Classifying} {Spaces} in the {Cobordism} {Theory} of {Singular} {Maps}},
     journal = {Informatics and Automation},
     pages = {280--287},
     year = {2009},
     volume = {267},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a21/}
}
TY  - JOUR
AU  - T. Terpai
TI  - Fibration of Classifying Spaces in the Cobordism Theory of Singular Maps
JO  - Informatics and Automation
PY  - 2009
SP  - 280
EP  - 287
VL  - 267
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a21/
LA  - en
ID  - TRSPY_2009_267_a21
ER  - 
%0 Journal Article
%A T. Terpai
%T Fibration of Classifying Spaces in the Cobordism Theory of Singular Maps
%J Informatics and Automation
%D 2009
%P 280-287
%V 267
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a21/
%G en
%F TRSPY_2009_267_a21
T. Terpai. Fibration of Classifying Spaces in the Cobordism Theory of Singular Maps. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 280-287. http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a21/

[1] Ekholm T., Szűcs A., Terpai T., “Cobordisms of fold maps and maps with a prescribed number of cusps”, Kyushu J. Math., 61:2 (2007), 395–414 | DOI | MR | Zbl

[2] Jänich K., “Symmetry properties of singularities of $C^\infty$-functions”, Math. Ann., 238 (1978), 147–156 | DOI | MR | Zbl

[3] Kalmár B., “Cobordism group of fold maps of oriented 3-manifolds into the plane”, Acta math. Hungar., 117:1–2 (2007), 1–25 | DOI | MR | Zbl

[4] Ohmoto T., Saeki O., Sakuma K., “Self-intersection class for singularities and its application to fold maps”, Trans. Amer. Math. Soc., 355 (2003), 3825–3838 | DOI | MR | Zbl

[5] Rimányi R., Szűcs A., “Pontrjagin–Thom-type construction for maps with singularities”, Topology, 37 (1998), 1177–1191 | DOI | MR | Zbl

[6] Rourke C., Sanderson B., “The compression theorem. I”, Geom. and Topol., 5 (2001), 399–429 | DOI | MR | Zbl

[7] Saeki O., “Fold maps on 4-manifolds”, Comment. Math. Helv., 78 (2003), 627–647 | DOI | MR | Zbl

[8] Szűcs A., “Cobordism groups of immersions of oriented manifolds”, Acta math. Hungar., 64:2 (1994), 191–230 | DOI | MR

[9] Szűcs A., “Cobordism of singular maps”, Geom. and Topol., 12 (2008), 2379–2452 ; arxiv: math/0612152v3 | DOI | MR

[10] Szűcs A., “Elimination of singularities by cobordism”, Real and complex singularities, Contemp. Math., 354, Amer. Math. Soc., Providence, RI, 2004, 301–324 | DOI | MR

[11] Terpai T., “Cobordisms of fold maps of $2k+2$-manifolds into $\mathbb R^{3k+2}$”, Geometry and topology of caustics – Caustics' 06, Banach Center Publ., 82, Pol. Acad. Sci. Inst. Math., Warsaw, 2008, 209–213 | DOI | MR | Zbl

[12] Wall C. T. C., “A second note on symmetry of singularities”, Bull. London Math. Soc., 12 (1980), 347–354 | DOI | MR | Zbl

[13] Yamamoto T., “Classification of singular fibres of stable maps of 4-manifolds into 3-manifolds and its applications”, J. Math. Soc. Japan, 58:3 (2006), 721–742 ; http://eprints.math.sci.hokudai.ac.jp/archive/00000073/ | DOI | MR | Zbl