Singularities of Algebraic Subvarieties and Problems of Birational Geometry
Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 245-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the connection between the problem of estimating the multiplicity of an algebraic subvariety at a given singular point and the problem of describing birational maps of rationally connected varieties. We describe the method of hypertangent divisors which makes it possible to give bounds for the multiplicities of singular points. The concept of birational rigidity of algebraic varieties is discussed.
@article{TRSPY_2009_267_a18,
     author = {A. V. Pukhlikov},
     title = {Singularities of {Algebraic} {Subvarieties} and {Problems} of {Birational} {Geometry}},
     journal = {Informatics and Automation},
     pages = {245--257},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a18/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Singularities of Algebraic Subvarieties and Problems of Birational Geometry
JO  - Informatics and Automation
PY  - 2009
SP  - 245
EP  - 257
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a18/
LA  - ru
ID  - TRSPY_2009_267_a18
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Singularities of Algebraic Subvarieties and Problems of Birational Geometry
%J Informatics and Automation
%D 2009
%P 245-257
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a18/
%G ru
%F TRSPY_2009_267_a18
A. V. Pukhlikov. Singularities of Algebraic Subvarieties and Problems of Birational Geometry. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 245-257. http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a18/

[1] Pukhlikov A. V., “Birational automorphisms of Fano hypersurfaces”, Invent. math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[2] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Mat. sb., 86(128):1 (1971), 140–166 | MR | Zbl

[3] Pukhlikov A. V., “Birational isomorphisms of four-dimensional quintics”, Invent. math., 87 (1987), 303–329 | DOI | MR | Zbl

[4] Pukhlikov A. V., “Birationally rigid Fano complete intersections”, J. reine und angew. Math., 541 (2001), 55–79 | MR | Zbl

[5] Pukhlikov A. V., “Biratsionalnaya geometriya pryamykh proizvedenii Fano”, Izv. RAN. Ser. mat., 69:6 (2005), 153–186 | DOI | MR | Zbl

[6] Pukhlikov A. V., “Biratsionalno zhestkie mnogoobraziya. I: Mnogoobraziya Fano”, UMN, 62:5 (2007), 15–106 | DOI | MR | Zbl

[7] Pukhlikov A. V., “Biratsionalno zhestkie dvoinye giperpoverkhnosti Fano”, Mat. sb., 191:6 (2000), 101–126 | DOI | MR | Zbl

[8] Kollár J., Miyaoka Y., Mori S., “Rationally connected varieties”, J. Alg. Geom., 1 (1992), 429–448 | MR | Zbl

[9] Kollár J., Rational curves on algebraic varieties, Springer, Berlin, 1996 | MR

[10] Graber T., Harris J., Starr J., “Families of rationally connected varieties”, J. Amer. Math. Soc., 16:1 (2003), 57–67 | DOI | MR | Zbl

[11] I. R. Shafarevich (red.), Algebraicheskie poverkhnosti, Sb. tr. sem. I R. Shafarevicha, Tr. MIAN, 75, Nauka, M., 1965 | MR | Zbl

[12] Griffiths Ph., Harris J., Principles of algebraic geometry, J. Wiley Sons, New York, 1978 ; Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR | Zbl | MR