Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2009_267_a14, author = {V. P. Leksin}, title = {Topology of {Complements} of {Hyperplane} {Arrangements} and {Isomonodromic} {Deformations} of {Fuchsian} {Systems}}, journal = {Informatics and Automation}, pages = {198--203}, publisher = {mathdoc}, volume = {267}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a14/} }
TY - JOUR AU - V. P. Leksin TI - Topology of Complements of Hyperplane Arrangements and Isomonodromic Deformations of Fuchsian Systems JO - Informatics and Automation PY - 2009 SP - 198 EP - 203 VL - 267 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a14/ LA - ru ID - TRSPY_2009_267_a14 ER -
V. P. Leksin. Topology of Complements of Hyperplane Arrangements and Isomonodromic Deformations of Fuchsian Systems. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 198-203. http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a14/
[1] Arnold V. I., “Koltso kogomologii gruppy krashenykh kos”, Mat. zametki, 5:2 (1969), 227–231 | MR | Zbl
[2] Brieskorn E., “Sur les groups de tresses”, Séminaire Bourbaki 1971/72, Lect. Notes Math., 317, Springer, Berlin, 1973, 21–44 | DOI | MR
[3] Klarès B., “Sur la monodromie des systèmes de Pfaff du type Fuchs sur $\mathbb P_m(\mathbb C)$”, Equations différentielles et systèmes de Pfaff dans le champ complexe, Lect. Notes Math., 712, Springer, Berlin, 1979, 293–324 | DOI | MR
[4] Leksin V. P., “Monodromy of Cherednik–Kohno–Veselov connections”, Differential equations and quantum groups, IRMA Lect. Math. and Theor. Phys., 9, Eur. Math. Soc., Zürich, 2007, 255–268 | MR
[5] Orlik P., Solomon L., “Combinatorics and topology of complements of hyperplanes”, Invent. math., 56 (1980), 167–189 | DOI | MR | Zbl
[6] Orlik P., Terao H., Arrangements of hyperplanes, Springer, Berlin, 1992 | MR | Zbl
[7] Randell R., “Lattice-isotopic arrangements are topologically isomorphic”, Proc. Amer. Math. Soc., 107:2 (1989), 555–559 | DOI | MR | Zbl
[8] Veselov A. P., “On geometry of a special class of solutions to generalized WDVV equations”, Integrability: The Seiberg–Witten and Whitham equations (Edinburg, 1998), Gordon and Breach, Amsterdam, 2000, 125–135 | MR | Zbl