On the Local Picard Group
Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 138-145

Voir la notice de l'article provenant de la source Math-Net.Ru

In his book SGA 2, A. Grothendieck developed Lefschetz theorems for the Picard group, the aim being to compare the Picard group of a projective variety with the one of a hyperplane section. An intermediate object is the Picard group of the formal completion along the hyperplane section. Here we proceed similarly but in the local complex analytic context. The use of the exponential sequence leads to analytic as well as topological depth conditions.
@article{TRSPY_2009_267_a10,
     author = {H. A. Hamm},
     title = {On the {Local} {Picard} {Group}},
     journal = {Informatics and Automation},
     pages = {138--145},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a10/}
}
TY  - JOUR
AU  - H. A. Hamm
TI  - On the Local Picard Group
JO  - Informatics and Automation
PY  - 2009
SP  - 138
EP  - 145
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a10/
LA  - en
ID  - TRSPY_2009_267_a10
ER  - 
%0 Journal Article
%A H. A. Hamm
%T On the Local Picard Group
%J Informatics and Automation
%D 2009
%P 138-145
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a10/
%G en
%F TRSPY_2009_267_a10
H. A. Hamm. On the Local Picard Group. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 138-145. http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a10/